PLSR function

Partial Least Squares Regression

Partial Least Squares Regression

Partial Least Squares Regression for numerical variables.

PLSR(Y, X, S = 2, InitTransform = 5, grouping = NULL, centerY = TRUE, scaleY = TRUE, tolerance = 5e-06, maxiter = 100, show = FALSE, Validation = NULL, nB = 500)

Arguments

  • Y: Matrix of Dependent Variables
  • X: Matrix of Independent Variables
  • S: Dimension of the solution
  • InitTransform: Initial transformation of the independent variables.
  • grouping: Fator when the init transformation is the standardization with the within groups deviation.
  • centerY: Should the dependent variables be centered?
  • scaleY: Should the dependent variables be standadized?
  • tolerance: Tolerance for the algorithm
  • maxiter: Maximum number of iterations
  • show: Show the progress of the algorithm?
  • Validation: Validation (None, Cross, Bootstrap)
  • nB: number of samples for the bottstrap validation

Details

Partial Least Squares Regression for numerical variables.

Returns

An object of class plsr with fiends

  • Method: PLSR

  • X: The X matrix

  • Y: The Y matrix

  • centerY: Is the Y matrix centered

  • scaleY: Is the Y matrix scaled

  • Initial_Transformation: Initial transformation of the Y matrix

  • ScaledX: Transformed X matrix

  • ScaledY: Transformed Y matrix

  • Intercept: Intercept of the model

  • XScores: Scores for the individals from the X matrix

  • XWeights: Weigths for the X set

  • XLoadings: Loadings for the X set

  • YScores: Scores for the individals from the Y matrix

  • YWeights: Weigths for the Y set

  • YLoadings: Loadings for the Y set

  • RegParameters: Final Regression Parameters

  • ExpectedY: Expected values of Y

  • R2: R-squared

  • XStructure: Relation of the X variables with its structure

  • YStructure: Relation of the Y variables with its structure

  • YXStructure: Relation of the Y variables with the X components

References

H. Abdi, Partial least squares regression and projection on latent structure regression (PLS regression), WIREs Comput. Stat. 2 (2010), pp. 97-106.

Author(s)

Jose Luis Vicente Villardon

See Also

Biplot.PLSR

Examples

X=as.matrix(wine[,4:21]) y=as.numeric(wine[,2])-1 mifit=PLSR(y,X, Validation="None")
  • Maintainer: Jose Luis Vicente Villardon
  • License: GPL (>= 2)
  • Last published: 2023-11-21

Useful links