Multidimensional Unfolding
Multidimensional Unfolding with some adaptations for vegetation analysis
Unfolding(A, ENV = NULL, TransAbund = "Gaussian Columns", offset = 0.5, weight = "All_1", Constrained = FALSE, TransEnv = "Standardize columns", InitConfig = "SVD", model = "Ratio", condition = "Columns", Algorithm = "SMACOF", OptimMethod = "CG", r = 2, maxiter = 100, tolerance = 1e-05, lambda = 1, omega = 0, plot = FALSE)
A
: The original proximities matrixENV
: The matrix of environmental variablesTransAbund
: Initial transformation of the abundances : "None", "Gaussian", "Column Percent", "Gaussian Columns", "Inverse Square Root", "Divide by Column Maximum")offset
: offset is the quantity added to the zeros of the tableweight
: A matrix of weights for each cell of the tableConstrained
: Should fit a constrained analysisTransEnv
: Transformation of the environmental variablesInitConfig
: Init configuration for the algorithmmodel
: Type of model to be fitted: "Identity", "Ratio", "Interval" or "Ordinal".condition
: "Matrix", "Columns" to condition to the whole matrix or to each columnAlgorithm
: Algorithm to fit the model: "SMACOF", "GD", "Genefold"OptimMethod
: Optimization method for gradient descentr
: Dimension of the solutionmaxiter
: Maximum number of iterations in the algorithmtolerance
: Tolerace for the algorithmlambda
: First penalization parameteromega
: Second penalization parameterplot
: Should the results be plotted?ological data
An object of class "Unfolding"
Ver Articulos
Jose Luis Vicente Villardon
unf=Unfolding(SpidersSp, ENV=SpidersEnv, model="Ratio", Constrained = FALSE, condition="Matrix") plot(unf, PlotTol=TRUE, PlotEnv = FALSE) plot(unf, PlotTol=TRUE, PlotEnv = TRUE) cbind(unf$QualityVars, unf$Var_Fit) unf2=Unfolding(SpidersSp, ENV=SpidersEnv, model="Ratio", Constrained = TRUE, condition="Matrix") plot(unf2, PlotTol=FALSE, PlotEnv = TRUE, mode="s") cbind(unf2$QualityVars, unf2$Var_Fit)
Useful links