PointedSDMs2.1.2 package

Fit Models Derived from Point Processes to Species Distributions using 'inlabru'

startISDM

startISDM: Function used to initialize the integrated species dist...

startMarks

startMarks: Function used to initialize a marked-point process mod...

startSpecies

startSpecies: Function used to initialize a multi-species integrat...

summary

Generic summary function for bruSDM.

specifyISDM

R6 class for creating a startISDM object.

specifyMarks

R6 class for creating a specifyMarks object.

specifySpecies

R6 class for creating a startSpecies object.

BBA

Dataset of setophaga caerulescens obtained from the Pennsylvania Atlas...

BBS

Dataset of setophaga caerulescens obtained from the North American Bre...

blockedCV-class

Export class blockedCV

nameChanger

nameChanger: function to change a variable name.

NLCD_canopy_raster

Raster object containing the canopy cover across Pennsylvania state.

Parks

data.frame object containing solitary tinamou observations from Parks

blockedCV

blockedCV: run spatial blocked cross-validation on the integrated ...

blockedCVpred-class

Export class blockedCVpred

bruSDM_predict-class

Export class predict_bru_sdm

bruSDM-class

Export bru_sdm class

changeCoords

changeCoords: function used to change coordinate names.

checkCoords

checkCoords: function used to check coordinate names.

checkVar

checkVar: Function used to check variable names.

data2ENV

data2ENV: function used to move objects from one environment to an...

dataOrganize

R6 class to assist in reformatting the data to be used in dataSDM.

dataSet

Internal function used to standardize datasets, as well as assign meta...

datasetOut-class

Export class bru_sdm_leave_one_out

SolTinCovariates

spatRaster object containing covariate values

datasetOut

datasetOut: function that removes a dataset out of the main model,...

eBird

data.frame object containing solitary tinamou observations from eBird

elev_raster

Raster object containing the elevation across Pennsylvania state.

fitISDM

fitISDM: function used to run the integrated model.

Gbif

data.frame object containing solitary tinamou observations from Gbif

intModel

intModel: Function used to initialize the integrated species distr...

makeFormulaComps

makeFormulaComps: function to make components for the covariate an...

makeLhoods

makeLhoods: function to make likelihoods.

modISDM_predict-class

Export class predict.modISDM

modISDM-class

Export modISDM class

modMarks_predict-class

Export class predict_modMarks

modMarks-class

Export modMarks class

modSpecies_predict-class

Export class predict_modSpecies

modSpecies-class

Export modSpecies class

plot

Generic plot function for predict_bru_sdm.

predict

Generic predict function for bru_SDM objects.

print.blockedCV

Print function for blockedCV.

print.blockedCVpred

Print function for blockedCV.

print.bruSDM_predict

Generic print function for bru_sdm_predict.

print.bruSDM

Generic print function for bruSDM.

print.datasetOut

Generic print function for datasetOut.

print.modISDM

Generic print function for modISDM.

print.modMarks

Generic print function for modMarks.

print.modSpecies

Generic print function for modSpecies.

reduceComps

reduceComps: Reduce the components of the model.

region

sf object containing the boundary region for solitary tinamouc

removeFormula

removeFormula: Function to remove term from a formula.

runModel

runModel: function used to run the integrated model. Note that thi...

Integrated species distribution modeling is a rising field in quantitative ecology thanks to significant rises in the quantity of data available, increases in computational speed and the proven benefits of using such models. Despite this, the general software to help ecologists construct such models in an easy-to-use framework is lacking. We therefore introduce the R package 'PointedSDMs': which provides the tools to help ecologists set up integrated models and perform inference on them. There are also functions within the package to help run spatial cross-validation for model selection, as well as generic plotting and predicting functions. An introduction to these methods is discussed in Issac, Jarzyna, Keil, Dambly, Boersch-Supan, Browning, Freeman, Golding, Guillera-Arroita, Henrys, Jarvis, Lahoz-Monfort, Pagel, Pescott, Schmucki, Simmonds and O’Hara (2020) <doi:10.1016/j.tree.2019.08.006>.

  • Maintainer: Philip Mostert
  • License: GPL (>= 3)
  • Last published: 2024-08-21