## S3 method for class 'bruSDM_predict'plot( x, whattoplot = c("mean"), cols =NULL, layout =NULL, colourLow =NULL, colourHigh =NULL, plot =TRUE,...)## S3 method for class 'modISDM_predict'plot(x, variable ="mean", plot =TRUE,...)## S3 method for class 'modMarks_predict'plot(x, variable ="mean", plot =TRUE,...)## S3 method for class 'modSpecies_predict'plot(x, variable ="mean", plot =TRUE,...)
Arguments
x: A modSpecies_predict object.
whattoplot: One of the following statistics to plot: "mean", "sd", "q0.025", "median","q0.975", "smin", "smax", "cv", "var"
cols: Number of columns required for the plotting. Used by inlabru's multiplot function.
layout: Layout of the plots. Used by inlabru's multiplot function.
colourLow: Colour for the low values in the predictions (see ?scale_colour_gradient from ggplot2). Defaults to NULL. If non-NULL, colourHigh is required.
colourHigh: Colour for the high values in the predictions (see ?scale_colour_gradient from ggplot2). Defaults to NULL. If non-NULL, colourLow is required.
plot: Should the plots be printed, defaults to TRUE. If FALSE will produce a list of ggplot objects.
...: Argument not used
variable: One of the following statistics to plot: "mean", "sd", "q0.025", "median","q0.975", "smin", "smax", "cv", "var"
Returns
A ggplot2 object.
A ggplot2 object.
A ggplot2 object.
A ggplot2 object.
Examples
## Not run:if(requireNamespace('INLA')){#Get Data data("SolitaryTinamou") proj <-"+proj=longlat +ellps=WGS84" data <- SolitaryTinamou$datasets
mesh <- SolitaryTinamou$mesh
mesh$crs <- proj
#Set model up organizedData <- intModel(data, Mesh = mesh, Coordinates = c('X','Y'), Projection = proj, responsePA ='Present')##Run the model modelRun <- fitISDM(organizedData, options = list(control.inla = list(int.strategy ='eb')))#Predict spatial field on linear scale predictions <- predict(modelRun, mesh = mesh, spatial =TRUE, fun ='linear')#Make generic plot of predictions plot(predictions, colourHigh ='red', colourLow ='orange')}## End(Not run)## Not run:if(requireNamespace('INLA')){#Get Data data("SolitaryTinamou") proj <-"+proj=longlat +ellps=WGS84" data <- SolitaryTinamou$datasets
mesh <- SolitaryTinamou$mesh
mesh$crs <- proj
#Set model up organizedData <- startISDM(data, Mesh = mesh, Coordinates = c('X','Y'), Projection = proj, responsePA ='Present')##Run the model modelRun <- fitISDM(organizedData, options = list(control.inla = list(int.strategy ='eb')))#Predict spatial field on linear scale predictions <- predict(modelRun, mesh = mesh, spatial =TRUE, fun ='linear')#Make generic plot of predictions plot(predictions, colourHigh ='red', colourLow ='orange')}## End(Not run)## Not run:if(requireNamespace('INLA')){#Get Data data("SolitaryTinamou") proj <-"+proj=longlat +ellps=WGS84" data <- SolitaryTinamou$datasets
mesh <- SolitaryTinamou$mesh
mesh$crs <- proj
#Set model up organizedData <- startMarks(data, Mesh = mesh, Projection = proj, responsePA ='Present', markNames ='speciesName', markFamily ='multinomial')##Run the model modelRun <- fitISDM(organizedData, options = list(control.inla = list(int.strategy ='eb', diagonal =1)))#Predict spatial field on linear scale predictions <- predict(modelRun, mesh = mesh, spatial =TRUE, fun ='linear')#Make generic plot of predictions plot(predictions)}## End(Not run)## Not run:if(requireNamespace('INLA')){#Get Data data("SolitaryTinamou") proj <-"+proj=longlat +ellps=WGS84" data <- SolitaryTinamou$datasets
mesh <- SolitaryTinamou$mesh
mesh$crs <- proj
#Set model up organizedData <- startSpecies(data, Mesh = mesh, Coordinates = c('X','Y'), Projection = proj, responsePA ='Present')##Run the model modelRun <- fitISDM(organizedData, options = list(control.inla = list(int.strategy ='eb')))#Predict spatial field on linear scale predictions <- predict(modelRun, mesh = mesh, spatial =TRUE, fun ='linear')#Make generic plot of predictions plot(predictions, colourHigh ='red', colourLow ='orange')}## End(Not run)