PopED0.7.0 package

Population (and Individual) Optimal Experimental Design

a_line_search

Optimize using line search

bfgsb_min

Nonlinear minimization using BFGS with box constraints

blockexp

Summarize your experiment for optimization routines

blockfinal

Result function for optimization routines

blockheader

Header function for optimization routines

blockopt

Summarize your optimization settings for optimization routines

build_sfg

Build PopED parameter function from a model function

calc_autofocus

Compute the autofocus portion of the stochastic gradient routine

calc_ofv_and_fim

Calculate the Fisher Information Matrix (FIM) and the OFV(FIM) for eit...

calc_ofv_and_grad

Compute an objective function and gradient

cell

Create a cell array (a matrix of lists)

convert_variables

Create global variables in the PopED database

create_design_space

Create design variables and a design space for a full description of a...

create_design

Create design variables for a full description of a design.

create.poped.database

Create a PopED database

design_summary

Display a summary of output from poped_db

diag_matlab

Function written to match MATLAB's diag function

Doptim

D-family optimization function

downsizing_general_design

Downsize a general design to a specific design

Dtrace

Trace optimization routines

ed_laplace_ofv

Evaluate the expectation of determinant the Fisher Information Matrix ...

ed_mftot

Evaluate the expectation of the Fisher Information Matrix (FIM) and th...

efficiency

Compute efficiency.

evaluate_design

Evaluate a design

evaluate_fim_map

Compute the Bayesian Fisher information matrix

evaluate_power

Power of a design to estimate a parameter.

evaluate.e.ofv.fim

Evaluate the expectation of the Fisher Information Matrix (FIM) and th...

evaluate.fim

Evaluate the Fisher Information Matrix (FIM)

extract_norm_group_fim

Extract a normalized group FIM

feps.add.prop

RUV model: Additive and Proportional.

feps.add

RUV model: Additive .

feps.prop

RUV model: Proportional.

feval

MATLAB feval function

ff.PK.1.comp.oral.md.CL

Structural model: one-compartment, oral absorption, multiple bolus dos...

ff.PK.1.comp.oral.md.KE

Structural model: one-compartment, oral absorption, multiple bolus dos...

ff.PK.1.comp.oral.sd.CL

Structural model: one-compartment, oral absorption, single bolus dose,...

ff.PK.1.comp.oral.sd.KE

Structural model: one-compartment, oral absorption, single bolus dose,...

ff.PKPD.1.comp.oral.md.CL.imax

Structural model: one-compartment, oral absorption, multiple bolus dos...

ff.PKPD.1.comp.sd.CL.emax

Structural model: one-compartment, single bolus IV dose, parameterized...

fileparts

MATLAB fileparts function

get_all_params

Extract all model parameters from the PopED database.

get_rse

Compute the expected parameter relative standard errors

get_unfixed_params

Return all the unfixed parameters

getfulld

Create a full D (between subject variability) matrix given a vector of...

getTruncatedNormal

Generate a random sample from a truncated normal distribution.

gradf_eps

Model linearization with respect to epsilon.

inv

Compute the inverse of a matrix

isempty

Function written to match MATLAB's isempty function

LEDoptim

Optimization function for D-family, E-family and Laplace approximated ...

LinMatrixH

Model linearization with respect to epsilon.

LinMatrixL_occ

Model linearization with respect to occasion variability parameters.

LinMatrixL

The linearized matrix L

LinMatrixLH

Model linearization with respect to epsilon and eta.

log_prior_pdf

Compute the natural log of the PDF for the parameters in an E-family d...

mc_mean

Compute the monte-carlo mean of a function

median_hilow_poped

Wrap summary functions from Hmisc and ggplot to work with stat_summary...

mf3

The Fisher Information Matrix (FIM) for one individual

mf7

The full Fisher Information Matrix (FIM) for one individual Calculatin...

mfea

Modified Fedorov Exchange Algorithm

mftot

Evaluate the Fisher Information Matrix (FIM)

model_prediction

Model predictions

ofv_criterion

Normalize an objective function by the size of the FIM matrix

ofv_fim

Evaluate a criterion of the Fisher Information Matrix (FIM)

ones

Create a matrix of ones

optim_ARS

Optimize a function using adaptive random search.

optim_LS

Optimize a function using a line search algorithm.

optimize_groupsize

Title Optimize the proportion of individuals in the design groups

optimize_n_eff

Translate efficiency to number of subjects

optimize_n_rse

Optimize the number of subjects based on desired uncertainty of a para...

pargen

Parameter simulation

plot_efficiency_of_windows

Plot the efficiency of windows

plot_model_prediction

Plot model predictions

poped_gui

Run the graphical interface for PopED

poped_optim_1

Optimization main module for PopEDOptimize the objective function. The...

poped_optim_2

Optimization main module for PopED

poped_optim_3

Optimization main module for PopED

poped_optim

Optimize a design defined in a PopED database

poped_optimize

Retired optimization module for PopED

PopED-package

PopED - Pop ulation (and individual) optimal E xperimental D esign.

poped.choose

Choose between arg1 and arg2

rand

Function written to match MATLAB's rand function

randn

Function written to match MATLAB's randn function

RS_opt

Optimize the objective function using an adaptive random search algori...

shrinkage

Predict shrinkage of empirical Bayes estimates (EBEs) in a population ...

size

Function written to match MATLAB's size function

start_parallel

Start parallel computational processes

summary.poped_optim

Display a summary of output from poped_optim

test_mat_size

Test to make sure that matricies are the right size

tic

Timer function (as in MATLAB)

toc

Timer function (as in MATLAB)

tryCatch.W.E

tryCatch both warnings (with value) and errors

zeros

Create a matrix of zeros.

Optimal experimental designs for both population and individual studies based on nonlinear mixed-effect models. Often this is based on a computation of the Fisher Information Matrix. This package was developed for pharmacometric problems, and examples and predefined models are available for these types of systems. The methods are described in Nyberg et al. (2012) <doi:10.1016/j.cmpb.2012.05.005>, and Foracchia et al. (2004) <doi:10.1016/S0169-2607(03)00073-7>.

  • Maintainer: Andrew C. Hooker
  • License: LGPL (>= 3)
  • Last published: 2024-10-07