Density, distribution function, quantile function and random generation for the Burr distribution (type XII).
dburr(x, alpha, rho, eta =1, log =FALSE)pburr(x, alpha, rho, eta =1, lower.tail =TRUE, log.p =FALSE)qburr(p, alpha, rho, eta =1, lower.tail =TRUE, log.p =FALSE)rburr(n, alpha, rho, eta =1)
Arguments
x: Vector of quantiles.
p: Vector of probabilities.
n: Number of observations.
alpha: The α parameter of the Burr distribution, a strictly positive number.
rho: The ρ parameter of the Burr distribution, a strictly negative number.
eta: The η parameter of the Burr distribution, a strictly positive number. The default value is 1.
log: Logical indicating if the densities are given as log(f), default is FALSE.
lower.tail: Logical indicating if the probabilities are of the form P(X≤x) (TRUE) or P(X>x) (FALSE). Default is TRUE.
log.p: Logical indicating if the probabilities are given as log(p), default is FALSE.
Details
The Cumulative Distribution Function (CDF) of the Burr distribution is equal to F(x)=1−((η+x−ρ×α)/η)1/ρ for all x≥0 and F(x)=0 otherwise. We need that α>0, ρ<0 and η>0.
Beirlant et al. (2004) uses parameters η,τ,λ which correspond to η, τ=−ρ×α and λ=−1/ρ.
Returns
dburr gives the density function evaluated in x, pburr the CDF evaluated in x and qburr the quantile function evaluated in p. The length of the result is equal to the length of x or p.
rburr returns a random sample of length n.
References
Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.
Author(s)
Tom Reynkens.
See Also
tBurr, Distributions
Examples
# Plot of the PDFx <- seq(0,10,0.01)plot(x, dburr(x, alpha=2, rho=-1), xlab="x", ylab="PDF", type="l")# Plot of the CDFx <- seq(0,10,0.01)plot(x, pburr(x, alpha=2, rho=-1), xlab="x", ylab="CDF", type="l")