where Π(u)=E((X−u)+) is the premium of the excess-loss insurance with retention u.
If the CDF is continuous in p, we have CTE1−p=TVaR1−p=1/p∫0pVaR1−sds with TVaR the Tail Value-at-Risk.
See Reynkens et al. (2017) and Section 4.6 of Albrecher et al. (2017) for more details.
The ES function is the same function as CTE but is deprecated.
Returns
Vector with the CTE corresponding to each element of p.
References
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Reynkens, T., Verbelen, R., Beirlant, J. and Antonio, K. (2017). "Modelling Censored Losses Using Splicing: a Global Fit Strategy With Mixed Erlang and Extreme Value Distributions". Insurance: Mathematics and Economics, 77, 65--77.
Verbelen, R., Gong, L., Antonio, K., Badescu, A. and Lin, S. (2015). "Fitting Mixtures of Erlangs to Censored and Truncated Data Using the EM Algorithm." Astin Bulletin, 45, 729--758
Author(s)
Tom Reynkens with R code from Roel Verbelen for the mixed Erlang quantiles.