Fit the Extended Pareto Distribution (GPD) to the exceedances (peaks) over a threshold. Optionally, these estimates are plotted as a function of k.
EPD(data, rho =-1, start =NULL, direct =FALSE, warnings =FALSE, logk =FALSE, plot =FALSE, add =FALSE, main ="EPD estimates of the EVI",...)
Arguments
data: Vector of n observations.
rho: A parameter for the ρ-estimator of Fraga Alves et al. (2003) when strictly positive or choice(s) for ρ if negative. Default is -1.
start: Vector of length 2 containing the starting values for the optimisation. The first element is the starting value for the estimator of γ and the second element is the starting value for the estimator of κ. This argument is only used when direct=TRUE. Default is NULL meaning the initial value for γ is the Hill estimator and the initial value for κ is 0.
direct: Logical indicating if the parameters are obtained by directly maximising the log-likelihood function, see Details. Default is FALSE.
warnings: Logical indicating if possible warnings from the optimisation function are shown, default is FALSE.
logk: Logical indicating if the estimates are plotted as a function of log(k) (logk=TRUE) or as a function of k. Default is FALSE.
plot: Logical indicating if the estimates of γ should be plotted as a function of k, default is FALSE.
add: Logical indicating if the estimates of γ should be added to an existing plot, default is FALSE.
main: Title for the plot, default is "EPD estimates of the EVI".
...: Additional arguments for the plot function, see plot for more details.
Details
We fit the Extended Pareto distribution to the relative excesses over a threshold (X/u). The EPD has distribution function F(x)=1−(x(1+κ−κxτ))−1/γ
with τ=ρ/γ<0<γ and κ>max(−1,1/τ).
The parameters are determined using MLE and there are two possible approaches: maximise the log-likelihood directly (direct=TRUE) or follow the approach detailed in Beirlant et al. (2009) (direct=FALSE). The latter approach uses the score functions of the log-likelihood.
See Section 4.2.1 of Albrecher et al. (2017) for more details.
Returns
A list with following components: - k: Vector of the values of the tail parameter k.
gamma: Vector of the corresponding estimates for the γ parameter of the EPD.
kappa: Vector of the corresponding MLE estimates for the κ parameter of the EPD.
tau: Vector of the corresponding estimates for the τ parameter of the EPD using Hill estimates and values for ρ.
References
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Beirlant, J., Joossens, E. and Segers, J. (2009). "Second-Order Refined Peaks-Over-Threshold Modelling for Heavy-Tailed Distributions." Journal of Statistical Planning and Inference, 139, 2800--2815.
Fraga Alves, M.I. , Gomes, M.I. and de Haan, L. (2003). "A New Class of Semi-parametric Estimators of the Second Order Parameter." Portugaliae Mathematica, 60, 193--214.
Author(s)
Tom Reynkens
See Also
GPDmle, ProbEPD
Examples
data(secura)# EPD estimates for the EVIepd <- EPD(secura$size, plot=TRUE)# Compute return periodsReturnEPD(secura$size,10^10, gamma=epd$gamma, kappa=epd$kappa, tau=epd$tau, plot=TRUE)