EPDfit function

Fit EPD using MLE

Fit EPD using MLE

Fit the Extended Pareto Distribution (EPD) to data using Maximum Likelihood Estimation (MLE).

EPDfit(data, tau, start = c(0.1, 1), warnings = FALSE)

Arguments

  • data: Vector of nn observations.
  • tau: Value for the τ\tau parameter of the EPD.
  • start: Vector of length 2 containing the starting values for the optimisation. The first element is the starting value for the estimator of γ\gamma and the second element is the starting value for the estimator of κ\kappa. Default is c(0.1,1).
  • warnings: Logical indicating if possible warnings from the optimisation function are shown, default is FALSE.

Details

See Section 4.2.1 of Albrecher et al. (2017) for more details.

Returns

A vector with the MLE estimate for the γ\gamma parameter of the EPD as the first component and the MLE estimate for the κ\kappa parameter of the EPD as the second component.

References

Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.

Beirlant, J., Joossens, E. and Segers, J. (2009). "Second-Order Refined Peaks-Over-Threshold Modelling for Heavy-Tailed Distributions." Journal of Statistical Planning and Inference, 139, 2800--2815.

Author(s)

Tom Reynkens

See Also

EPD, GPDfit

Examples

data(soa) # Look at last 500 observations of SOA data SOAdata <- sort(soa$size)[length(soa$size)-(0:499)] # Fit EPD to last 500 observations res <- EPDfit(SOAdata/sort(soa$size)[500], tau=-1)
  • Maintainer: Tom Reynkens
  • License: GPL (>= 2)
  • Last published: 2024-12-02