Density, distribution function, quantile function and random generation for the Extended Pareto Distribution (EPD).
depd(x, gamma, kappa, tau =-1, log =FALSE)pepd(x, gamma, kappa, tau =-1, lower.tail =TRUE, log.p =FALSE)qepd(p, gamma, kappa, tau =-1, lower.tail =TRUE, log.p =FALSE)repd(n, gamma, kappa, tau =-1)
Arguments
x: Vector of quantiles.
p: Vector of probabilities.
n: Number of observations.
gamma: The γ parameter of the EPD, a strictly positive number.
kappa: The κ parameter of the EPD. It should be larger than max{−1,1/τ}.
tau: The τ parameter of the EPD, a strictly negative number. Default is -1.
log: Logical indicating if the densities are given as log(f), default is FALSE.
lower.tail: Logical indicating if the probabilities are of the form P(X≤x) (TRUE) or P(X>x) (FALSE). Default is TRUE.
log.p: Logical indicating if the probabilities are given as log(p), default is FALSE.
Details
The Cumulative Distribution Function (CDF) of the EPD is equal to F(x)=1−(x(1+κ−κxτ))−1/γ for all x>1 and F(x)=0 otherwise.
Note that an EPD random variable with τ=−1 and κ=γ/σ−1 is GPD distributed with μ=1, γ and σ.
Returns
depd gives the density function evaluated in x, pepd the CDF evaluated in x and qepd the quantile function evaluated in p. The length of the result is equal to the length of x or p.
repd returns a random sample of length n.
References
Beirlant, J., Joossens, E. and Segers, J. (2009). "Second-Order Refined Peaks-Over-Threshold Modelling for Heavy-Tailed Distributions." Journal of Statistical Planning and Inference, 139, 2800--2815.
Author(s)
Tom Reynkens.
See Also
Pareto, GPD, Distributions
Examples
# Plot of the PDFx <- seq(0,10,0.01)plot(x, depd(x, gamma=1/2, kappa=1, tau=-1), xlab="x", ylab="PDF", type="l")# Plot of the CDFx <- seq(0,10,0.01)plot(x, pepd(x, gamma=1/2, kappa=1, tau=-1), xlab="x", ylab="CDF", type="l")