GPD function

The generalised Pareto distribution

The generalised Pareto distribution

Density, distribution function, quantile function and random generation for the Generalised Pareto Distribution (GPD).

dgpd(x, gamma, mu = 0, sigma, log = FALSE) pgpd(x, gamma, mu = 0, sigma, lower.tail = TRUE, log.p = FALSE) qgpd(p, gamma, mu = 0, sigma, lower.tail = TRUE, log.p = FALSE) rgpd(n, gamma, mu = 0, sigma)

Arguments

  • x: Vector of quantiles.
  • p: Vector of probabilities.
  • n: Number of observations.
  • gamma: The γ\gamma parameter of the GPD, a real number.
  • mu: The μ\mu parameter of the GPD, a strictly positive number. Default is 0.
  • sigma: The σ\sigma parameter of the GPD, a strictly positive number.
  • log: Logical indicating if the densities are given as log(f)\log(f), default is FALSE.
  • lower.tail: Logical indicating if the probabilities are of the form P(Xx)P(X\le x) (TRUE) or P(X>x)P(X>x) (FALSE). Default is TRUE.
  • log.p: Logical indicating if the probabilities are given as log(p)\log(p), default is FALSE.

Details

The Cumulative Distribution Function (CDF) of the GPD for γ0\gamma \neq 0 is equal to F(x)=1(1+γ(xμ)/σ)1/γF(x) = 1-(1+\gamma (x-\mu)/\sigma)^{-1/\gamma} for all xμx \ge \mu and F(x)=0F(x)=0 otherwise. When γ=0\gamma=0, the CDF is given by F(x)=1exp((xμ)/σ)F(x) = 1-\exp((x-\mu)/\sigma) for all xμx \ge \mu and F(x)=0F(x)=0 otherwise.

Returns

dgpd gives the density function evaluated in xx, pgpd the CDF evaluated in xx and qgpd the quantile function evaluated in pp. The length of the result is equal to the length of xx or pp.

rgpd returns a random sample of length nn.

References

Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.

Author(s)

Tom Reynkens.

See Also

tGPD, Pareto, EPD, Distributions

Examples

# Plot of the PDF x <- seq(0, 10, 0.01) plot(x, dgpd(x, gamma=1/2, sigma=5), xlab="x", ylab="PDF", type="l") # Plot of the CDF x <- seq(0, 10, 0.01) plot(x, pgpd(x, gamma=1/2, sigma=5), xlab="x", ylab="CDF", type="l")
  • Maintainer: Tom Reynkens
  • License: GPL (>= 2)
  • Last published: 2024-12-02