Density, distribution function, quantile function and random generation for the Generalised Pareto Distribution (GPD).
dgpd(x, gamma, mu =0, sigma, log =FALSE)pgpd(x, gamma, mu =0, sigma, lower.tail =TRUE, log.p =FALSE)qgpd(p, gamma, mu =0, sigma, lower.tail =TRUE, log.p =FALSE)rgpd(n, gamma, mu =0, sigma)
Arguments
x: Vector of quantiles.
p: Vector of probabilities.
n: Number of observations.
gamma: The γ parameter of the GPD, a real number.
mu: The μ parameter of the GPD, a strictly positive number. Default is 0.
sigma: The σ parameter of the GPD, a strictly positive number.
log: Logical indicating if the densities are given as log(f), default is FALSE.
lower.tail: Logical indicating if the probabilities are of the form P(X≤x) (TRUE) or P(X>x) (FALSE). Default is TRUE.
log.p: Logical indicating if the probabilities are given as log(p), default is FALSE.
Details
The Cumulative Distribution Function (CDF) of the GPD for γ=0 is equal to F(x)=1−(1+γ(x−μ)/σ)−1/γ for all x≥μ and F(x)=0 otherwise. When γ=0, the CDF is given by F(x)=1−exp((x−μ)/σ) for all x≥μ and F(x)=0 otherwise.
Returns
dgpd gives the density function evaluated in x, pgpd the CDF evaluated in x and qgpd the quantile function evaluated in p. The length of the result is equal to the length of x or p.
rgpd returns a random sample of length n.
References
Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.
Author(s)
Tom Reynkens.
See Also
tGPD, Pareto, EPD, Distributions
Examples
# Plot of the PDFx <- seq(0,10,0.01)plot(x, dgpd(x, gamma=1/2, sigma=5), xlab="x", ylab="PDF", type="l")# Plot of the CDFx <- seq(0,10,0.01)plot(x, pgpd(x, gamma=1/2, sigma=5), xlab="x", ylab="CDF", type="l")