Fit the Generalised Pareto Distribution (GPD) to data using Maximum Likelihood Estimation (MLE).
GPDfit(data, start = c(0.1,1), warnings =FALSE)
Arguments
data: Vector of n observations.
start: Vector of length 2 containing the starting values for the optimisation. The first element is the starting value for the estimator of γ and the second element is the starting value for the estimator of σ. Default is c(0.1,1).
warnings: Logical indicating if possible warnings from the optimisation function are shown, default is FALSE.
Details
See Section 4.2.2 in Albrecher et al. (2017) for more details.
Returns
A vector with the MLE estimate for the γ parameter of the GPD as the first component and the MLE estimate for the σ parameter of the GPD as the second component.
References
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.
Author(s)
Tom Reynkens based on S-Plus code from Yuri Goegebeur and R code from Klaus Herrmann.
See Also
GPDmle, EPDfit
Examples
data(soa)# Look at last 500 observations of SOA dataSOAdata <- sort(soa$size)[length(soa$size)-(0:499)]# Fit GPD to last 500 observationsres <- GPDfit(SOAdata-sort(soa$size)[500])