GPDfit function

Fit GPD using MLE

Fit GPD using MLE

Fit the Generalised Pareto Distribution (GPD) to data using Maximum Likelihood Estimation (MLE).

GPDfit(data, start = c(0.1, 1), warnings = FALSE)

Arguments

  • data: Vector of nn observations.
  • start: Vector of length 2 containing the starting values for the optimisation. The first element is the starting value for the estimator of γ\gamma and the second element is the starting value for the estimator of σ\sigma. Default is c(0.1,1).
  • warnings: Logical indicating if possible warnings from the optimisation function are shown, default is FALSE.

Details

See Section 4.2.2 in Albrecher et al. (2017) for more details.

Returns

A vector with the MLE estimate for the γ\gamma parameter of the GPD as the first component and the MLE estimate for the σ\sigma parameter of the GPD as the second component.

References

Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.

Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.

Author(s)

Tom Reynkens based on S-Plus code from Yuri Goegebeur and R code from Klaus Herrmann.

See Also

GPDmle, EPDfit

Examples

data(soa) # Look at last 500 observations of SOA data SOAdata <- sort(soa$size)[length(soa$size)-(0:499)] # Fit GPD to last 500 observations res <- GPDfit(SOAdata-sort(soa$size)[500])
  • Maintainer: Tom Reynkens
  • License: GPL (>= 2)
  • Last published: 2024-12-02