Computes the Least Squares (LS) estimates of the EVI based on the last k observations of the generalised QQ-plot.
LStail(data, rho =-1, lambda =0.5, logk =FALSE, plot =FALSE, add =FALSE, main ="LS estimates of the EVI",...)TSfraction(data, rho =-1, lambda =0.5, logk =FALSE, plot =FALSE, add =FALSE, main ="LS estimates of the EVI",...)
Arguments
data: Vector of n observations.
rho: Estimate for ρ, or NULL when ρ needs to be estimated using the method of Beirlant et al. (2002). Default is -1.
lambda: Parameter used in the method of Beirlant et al. (2002), only used when rho=NULL. Default is 0.5.
logk: Logical indicating if the estimates are plotted as a function of log(k) (logk=TRUE) or as a function of k. Default is FALSE.
plot: Logical indicating if the estimates of γ should be plotted as a function of k, default is FALSE.
add: Logical indicating if the estimates of γ should be added to an existing plot, default is FALSE.
main: Title for the plot, default is "LS estimates of the EVI".
...: Additional arguments for the plot function, see plot for more details.
Details
We estimate γ (EVI) and b using least squares on the following regression model (Beirlant et al., 2005): Zj=γ+b(n/k)(j/k)−ρ+ϵj with Zj=(j+1)log(UHj,n/UHj+1,n) and UHj,n=Xn−j,nHj,n, where Hj,n is the Hill estimator with threshold Xn−j,n.
See Section 5.8 of Beirlant et al. (2004) for more details.
The function TSfraction is included for compatibility with the old S-Plus code.
Returns
k: Vector of the values of the tail parameter k.
gamma: Vector of the corresponding LS estimates for the EVI.
b: Vector of the corresponding LS estimates for b.
rho: Vector of the estimates for ρ when rho=NULL or the given input for rho otherwise.
References
Beirlant, J., Dierckx, G. and Guillou, A. (2005). "Estimation of the Extreme Value Index and Regression on Generalized Quantile Plots." Bernoulli, 11, 949--970.
Beirlant, J., Dierckx, G., Guillou, A. and Starica, C. (2002). "On Exponential Representations of Log-spacing of Extreme Order Statistics." Extremes, 5, 157--180.
Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.
Author(s)
Tom Reynkens based on S-Plus code from Yuri Goegebeur.
See Also
genQQ
Examples
data(soa)# LS tail estimatorLStail(soa$size, plot=TRUE, ylim=c(0,0.5))