LognormalQQ_der function

Derivative plot of the log-normal QQ-plot

Derivative plot of the log-normal QQ-plot

Computes the derivative plot of the log-normal QQ-plot. These values can be plotted as a function of the data or as a function of the tail parameter kk.

LognormalQQ_der(data, k = FALSE, plot = TRUE, main = "Derivative plot of log-normal QQ-plot", ...)

Arguments

  • data: Vector of nn observations.
  • plot: Logical indicating if the derivative values should be plotted, default is TRUE.
  • k: Logical indicating if the derivative values are plotted as a function of the tail parameter kk (k=TRUE) or as a function of the logarithm of the data (k=FALSE). Default is FALSE.
  • main: Title for the plot, default is "Derivative plot of log-normal QQ-plot".
  • ...: Additional arguments for the plot function, see plot for more details.

Details

The derivative plot of a log-normal QQ-plot is

(k,Hk,n/Nk,n) (k, H_{k,n}/N_{k,n})

or

(logXnk,n,Hk,n/Nk,n) (\log X_{n-k,n}, H_{k,n}/N_{k,n})

with Hk,nH_{k,n} the Hill estimates and

Nk,n=(n+1)/(k+1)ϕ(Φ1(a))Φ1(a). N_{k,n} = (n+1)/(k+1) \phi(\Phi^{-1}(a)) - \Phi^{-1}(a).

Here is a=1(k+1)/(n+1)a=1-(k+1)/(n+1), ϕ\phi the standard normal PDF and Φ\Phi the standard normal CDF.

See Section 4.1 of Albrecher et al. (2017) for more details.

Returns

A list with following components: - xval: Vector of the x-values of the plot (kk or logXnk,n\log X_{n-k,n}).

  • yval: Vector of the derivative values.

References

Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.

Author(s)

Tom Reynkens.

See Also

LognormalQQ, Hill, MeanExcess, ParetoQQ_der, WeibullQQ_der

Examples

data(norwegianfire) # Log-normal QQ-plot for Norwegian Fire Insurance data for claims in 1976. LognormalQQ(norwegianfire$size[norwegianfire$year==76]) # Derivate plot LognormalQQ_der(norwegianfire$size[norwegianfire$year==76])
  • Maintainer: Tom Reynkens
  • License: GPL (>= 2)
  • Last published: 2024-12-02