Compute the moment estimates for real extreme value indices as a function of the tail parameter k. Optionally, these estimates are plotted as a function of k.
Moment(data, logk =FALSE, plot =FALSE, add =FALSE, main ="Moment estimates of the EVI",...)
Arguments
data: Vector of n observations.
logk: Logical indicating if the estimates are plotted as a function of log(k) (logk=TRUE) or as a function of k. Default is FALSE.
plot: Logical indicating if the estimates should be plotted as a function of k, default is FALSE.
add: Logical indicating if the estimates should be added to an existing plot, default is FALSE.
main: Title for the plot, default is "Moment estimates of the EVI".
...: Additional arguments for the plot function, see plot for more details.
Details
The moment estimator for the EVI is introduced by Dekkers et al. (1989) and is a generalisation of the Hill estimator.
See Section 4.2.2 of Albrecher et al. (2017) for more details.
Returns
A list with following components: - k: Vector of the values of the tail parameter k.
gamma: Vector of the corresponding moment estimates.
References
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.
Dekkers, A.L.M, Einmahl, J.H.J. and de Haan, L. (1989). "A Moment Estimator for the Index of an Extreme-value Distribution." Annals of Statistics, 17, 1833--1855.
Author(s)
Tom Reynkens based on S-Plus code from Yuri Goegebeur.