Estimator of small exceedance probabilities and large return periods using GPD-MLE
Estimator of small exceedance probabilities and large return periods using GPD-MLE
Computes estimates of a small exceedance probability P(X>q) or large return period 1/P(X>q) using the GPD fit for the peaks over a threshold.
ProbGPD(data, gamma, sigma, q, plot =FALSE, add =FALSE, main ="Estimates of small exceedance probability",...)ReturnGPD(data, gamma, sigma, q, plot =FALSE, add =FALSE, main ="Estimates of large return period",...)
Arguments
data: Vector of n observations.
gamma: Vector of n−1 estimates for the EVI obtained from GPDmle.
sigma: Vector of n−1 estimates for σ obtained from GPDmle.
q: The used large quantile (we estimate P(X>q) or 1/P(X>q) for q large).
plot: Logical indicating if the estimates should be plotted as a function of k, default is FALSE.
add: Logical indicating if the estimates should be added to an existing plot, default is FALSE.
main: Title for the plot, default is "Estimates of small exceedance probability" for ProbGPD
and "Estimates of large return period" for ReturnGPD.
...: Additional arguments for the plot function, see plot for more details.
Details
See Section 4.2.2 in Albrecher et al. (2017) for more details.
Returns
A list with following components: - k: Vector of the values of the tail parameter k.
P: Vector of the corresponding probability estimates, only returned for ProbGPD.
R: Vector of the corresponding estimates for the return period, only returned for ReturnGPD.
q: The used large quantile.
References
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.
Author(s)
Tom Reynkens.
See Also
QuantGPD, GPDmle, Prob
Examples
data(soa)# Look at last 500 observations of SOA dataSOAdata <- sort(soa$size)[length(soa$size)-(0:499)]# GPD-ML estimatorpot <- GPDmle(SOAdata)# Exceedance probabilityq <-10^7ProbGPD(SOAdata, gamma=pot$gamma, sigma=pot$sigma, q=q, plot=TRUE)# Return periodq <-10^7ReturnGPD(SOAdata, gamma=pot$gamma, sigma=pot$sigma, q=q, plot=TRUE)