ProbGPD function

Estimator of small exceedance probabilities and large return periods using GPD-MLE

Estimator of small exceedance probabilities and large return periods using GPD-MLE

Computes estimates of a small exceedance probability P(X>q)P(X>q) or large return period 1/P(X>q)1/P(X>q) using the GPD fit for the peaks over a threshold.

ProbGPD(data, gamma, sigma, q, plot = FALSE, add = FALSE, main = "Estimates of small exceedance probability", ...) ReturnGPD(data, gamma, sigma, q, plot = FALSE, add = FALSE, main = "Estimates of large return period", ...)

Arguments

  • data: Vector of nn observations.

  • gamma: Vector of n1n-1 estimates for the EVI obtained from GPDmle.

  • sigma: Vector of n1n-1 estimates for σ\sigma obtained from GPDmle.

  • q: The used large quantile (we estimate P(X>q)P(X>q) or 1/P(X>q)1/P(X>q) for qq large).

  • plot: Logical indicating if the estimates should be plotted as a function of kk, default is FALSE.

  • add: Logical indicating if the estimates should be added to an existing plot, default is FALSE.

  • main: Title for the plot, default is "Estimates of small exceedance probability" for ProbGPD

    and "Estimates of large return period" for ReturnGPD.

  • ...: Additional arguments for the plot function, see plot for more details.

Details

See Section 4.2.2 in Albrecher et al. (2017) for more details.

Returns

A list with following components: - k: Vector of the values of the tail parameter kk.

  • P: Vector of the corresponding probability estimates, only returned for ProbGPD.

  • R: Vector of the corresponding estimates for the return period, only returned for ReturnGPD.

  • q: The used large quantile.

References

Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.

Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.

Author(s)

Tom Reynkens.

See Also

QuantGPD, GPDmle, Prob

Examples

data(soa) # Look at last 500 observations of SOA data SOAdata <- sort(soa$size)[length(soa$size)-(0:499)] # GPD-ML estimator pot <- GPDmle(SOAdata) # Exceedance probability q <- 10^7 ProbGPD(SOAdata, gamma=pot$gamma, sigma=pot$sigma, q=q, plot=TRUE) # Return period q <- 10^7 ReturnGPD(SOAdata, gamma=pot$gamma, sigma=pot$sigma, q=q, plot=TRUE)
  • Maintainer: Tom Reynkens
  • License: GPL (>= 2)
  • Last published: 2024-12-02