Quant function

Weissman estimator of extreme quantiles

Weissman estimator of extreme quantiles

Compute estimates of an extreme quantile Q(1p)Q(1-p) using the approach of Weissman (1978).

Quant(data, gamma, p, plot = FALSE, add = FALSE, main = "Estimates of extreme quantile", ...) Weissman.q(data, gamma, p, plot = FALSE, add = FALSE, main = "Estimates of extreme quantile", ...)

Arguments

  • data: Vector of nn observations.
  • gamma: Vector of n1n-1 estimates for the EVI, typically Hill estimates are used.
  • p: The exceedance probability of the quantile (we estimate Q(1p)Q(1-p) for pp small).
  • plot: Logical indicating if the estimates should be plotted as a function of kk, default is FALSE.
  • add: Logical indicating if the estimates as a function of kk should be added to an existing plot, default is FALSE.
  • main: Title for the plot, default is "Estimates of extreme quantile".
  • ...: Additional arguments for the plot function, see plot for more details.

Details

See Section 4.2.1 of Albrecher et al. (2017) for more details.

Weissman.q is the same function but with a different name for compatibility with the old S-Plus code.

Returns

A list with following components: - k: Vector of the values of the tail parameter kk.

  • Q: Vector of the corresponding quantile estimates.

  • p: The used exceedance probability.

References

Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.

Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.

Weissman, I. (1978). "Estimation of Parameters and Large Quantiles Based on the k Largest Observations." Journal of the American Statistical Association, 73, 812--815.

Author(s)

Tom Reynkens based on S-Plus code from Yuri Goegebeur.

See Also

Prob, Quant.2oQV

Examples

data(soa) # Look at last 500 observations of SOA data SOAdata <- sort(soa$size)[length(soa$size)-(0:499)] # Hill estimator H <- Hill(SOAdata) # Bias-reduced estimator (QV) H_QV <- Hill.2oQV(SOAdata) # Exceedance probability p <- 10^(-5) # Weissman estimator Quant(SOAdata, gamma=H$gamma, p=p, plot=TRUE) # Second order Weissman estimator (QV) Quant.2oQV(SOAdata, gamma=H_QV$gamma, beta=H_QV$beta, b=H_QV$b, p=p, add=TRUE, lty=2)
  • Maintainer: Tom Reynkens
  • License: GPL (>= 2)
  • Last published: 2024-12-02