Quant2o function

Second order refined Weissman estimator of extreme quantiles (QV)

Second order refined Weissman estimator of extreme quantiles (QV)

Compute second order refined Weissman estimator of extreme quantiles Q(1p)Q(1-p) using the quantile view.

Quant.2oQV(data, gamma, b, beta, p, plot = FALSE, add = FALSE, main = "Estimates of extreme quantile", ...) Weissman.q.2oQV(data, gamma, b, beta, p, plot = FALSE, add = FALSE, main = "Estimates of extreme quantile", ...)

Arguments

  • data: Vector of nn observations.
  • gamma: Vector of n1n-1 estimates for the EVI obtained from Hill.2oQV.
  • b: Vector of n1n-1 estimates for bb obtained from Hill.2oQV.
  • beta: Vector of n1n-1 estimates for β\beta obtained from Hill.2oQV.
  • p: The exceedance probability of the quantile (we estimate Q(1p)Q(1-p) for pp small).
  • plot: Logical indicating if the estimates should be plotted as a function of kk, default is FALSE.
  • add: Logical indicating if the estimates should be added to an existing plot, default is FALSE.
  • main: Title for the plot, default is "Estimates of extreme quantile".
  • ...: Additional arguments for the plot function, see plot for more details.

Details

See Section 4.2.1 of Albrecher et al. (2017) for more details.

Weissman.q.2oQV is the same function but with a different name for compatibility with the old S-Plus code.

Returns

A list with following components: - k: Vector of the values of the tail parameter kk.

  • Q: Vector of the corresponding quantile estimates.

  • p: The used exceedance probability.

References

Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.

Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.

Author(s)

Tom Reynkens based on S-Plus code from Yuri Goegebeur.

See Also

Quant, Hill.2oQV

Examples

data(soa) # Look at last 500 observations of SOA data SOAdata <- sort(soa$size)[length(soa$size)-(0:499)] # Hill estimator H <- Hill(SOAdata) # Bias-reduced estimator (QV) H_QV <- Hill.2oQV(SOAdata) # Exceedance probability p <- 10^(-5) # Weissman estimator Quant(SOAdata, gamma=H$gamma, p=p, plot=TRUE) # Second order Weissman estimator (QV) Quant.2oQV(SOAdata, gamma=H_QV$gamma, beta=H_QV$beta, b=H_QV$b, p=p, add=TRUE, lty=2)
  • Maintainer: Tom Reynkens
  • License: GPL (>= 2)
  • Last published: 2024-12-02