Second order refined Weissman estimator of extreme quantiles (QV)
Second order refined Weissman estimator of extreme quantiles (QV)
Compute second order refined Weissman estimator of extreme quantiles Q(1−p) using the quantile view.
Quant.2oQV(data, gamma, b, beta, p, plot =FALSE, add =FALSE, main ="Estimates of extreme quantile",...)Weissman.q.2oQV(data, gamma, b, beta, p, plot =FALSE, add =FALSE, main ="Estimates of extreme quantile",...)
Arguments
data: Vector of n observations.
gamma: Vector of n−1 estimates for the EVI obtained from Hill.2oQV.
b: Vector of n−1 estimates for b obtained from Hill.2oQV.
beta: Vector of n−1 estimates for β obtained from Hill.2oQV.
p: The exceedance probability of the quantile (we estimate Q(1−p) for p small).
plot: Logical indicating if the estimates should be plotted as a function of k, default is FALSE.
add: Logical indicating if the estimates should be added to an existing plot, default is FALSE.
main: Title for the plot, default is "Estimates of extreme quantile".
...: Additional arguments for the plot function, see plot for more details.
Details
See Section 4.2.1 of Albrecher et al. (2017) for more details.
Weissman.q.2oQV is the same function but with a different name for compatibility with the old S-Plus code.
Returns
A list with following components: - k: Vector of the values of the tail parameter k.
Q: Vector of the corresponding quantile estimates.
p: The used exceedance probability.
References
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.
Author(s)
Tom Reynkens based on S-Plus code from Yuri Goegebeur.
See Also
Quant, Hill.2oQV
Examples
data(soa)# Look at last 500 observations of SOA dataSOAdata <- sort(soa$size)[length(soa$size)-(0:499)]# Hill estimatorH <- Hill(SOAdata)# Bias-reduced estimator (QV)H_QV <- Hill.2oQV(SOAdata)# Exceedance probabilityp <-10^(-5)# Weissman estimatorQuant(SOAdata, gamma=H$gamma, p=p, plot=TRUE)# Second order Weissman estimator (QV)Quant.2oQV(SOAdata, gamma=H_QV$gamma, beta=H_QV$beta, b=H_QV$b, p=p, add=TRUE, lty=2)