Computes estimates of an extreme quantile Q(1−p) using the GPD fit for the peaks over a threshold.
QuantGPD(data, gamma, sigma, p, plot =FALSE, add =FALSE, main ="Estimates of extreme quantile",...)
Arguments
data: Vector of n observations.
gamma: Vector of n−1 estimates for the EVI obtained from GPDmle.
sigma: Vector of n−1 estimates for σ obtained from GPDmle.
p: The exceedance probability of the quantile (we estimate Q(1−p) for p small).
plot: Logical indicating if the estimates should be plotted as a function of k, default is FALSE.
add: Logical indicating if the estimates should be added to an existing plot, default is FALSE.
main: Title for the plot, default is "Estimates of extreme quantile".
...: Additional arguments for the plot function, see plot for more details.
Details
See Section 4.2.2 in Albrecher et al. (2017) for more details.
Returns
A list with following components: - k: Vector of the values of the tail parameter k.
Q: Vector of the corresponding quantile estimates.
p: The used exceedance probability.
References
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.
Author(s)
Tom Reynkens.
See Also
ProbGPD, GPDmle, Quant
Examples
data(soa)# Look at last 500 observations of SOA dataSOAdata <- sort(soa$size)[length(soa$size)-(0:499)]# GPD-ML estimatorpot <- GPDmle(SOAdata)# Large quantilep <-10^(-5)QuantGPD(SOAdata, p=p, gamma=pot$gamma, sigma=pot$sigma, plot=TRUE)