QuantGPD function

Estimator of extreme quantiles using GPD-MLE

Estimator of extreme quantiles using GPD-MLE

Computes estimates of an extreme quantile Q(1p)Q(1-p) using the GPD fit for the peaks over a threshold.

QuantGPD(data, gamma, sigma, p, plot = FALSE, add = FALSE, main = "Estimates of extreme quantile", ...)

Arguments

  • data: Vector of nn observations.
  • gamma: Vector of n1n-1 estimates for the EVI obtained from GPDmle.
  • sigma: Vector of n1n-1 estimates for σ\sigma obtained from GPDmle.
  • p: The exceedance probability of the quantile (we estimate Q(1p)Q(1-p) for pp small).
  • plot: Logical indicating if the estimates should be plotted as a function of kk, default is FALSE.
  • add: Logical indicating if the estimates should be added to an existing plot, default is FALSE.
  • main: Title for the plot, default is "Estimates of extreme quantile".
  • ...: Additional arguments for the plot function, see plot for more details.

Details

See Section 4.2.2 in Albrecher et al. (2017) for more details.

Returns

A list with following components: - k: Vector of the values of the tail parameter kk.

  • Q: Vector of the corresponding quantile estimates.

  • p: The used exceedance probability.

References

Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.

Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.

Author(s)

Tom Reynkens.

See Also

ProbGPD, GPDmle, Quant

Examples

data(soa) # Look at last 500 observations of SOA data SOAdata <- sort(soa$size)[length(soa$size)-(0:499)] # GPD-ML estimator pot <- GPDmle(SOAdata) # Large quantile p <- 10^(-5) QuantGPD(SOAdata, p=p, gamma=pot$gamma, sigma=pot$sigma, plot=TRUE)
  • Maintainer: Tom Reynkens
  • License: GPL (>= 2)
  • Last published: 2024-12-02