QuantReg function

Estimator of extreme quantiles in regression

Estimator of extreme quantiles in regression

Estimator of extreme quantile Qi(1p)Q_i(1-p) in the regression case where γ\gamma is constant and the regression modelling is thus only solely placed on the scale parameter.

QuantReg(Z, A, p, plot = FALSE, add = FALSE, main = "Estimates of extreme quantile", ...)

Arguments

  • Z: Vector of nn observations (from the response variable).
  • A: Vector of n1n-1 estimates for A(i/n)A(i/n) obtained from ScaleReg.
  • p: The exceedance probability of the quantile (we estimate Qi(1p)Q_i(1-p) for pp small).
  • plot: Logical indicating if the estimates should be plotted as a function of kk, default is FALSE.
  • add: Logical indicating if the estimates should be added to an existing plot, default is FALSE.
  • main: Title for the plot, default is "Estimates of extreme quantile".
  • ...: Additional arguments for the plot function, see plot for more details.

Details

The estimator is defined as

Q^i(1p)=Znk,n((k+1)/((n+1)×p)A^(i/n))Hk,n, \hat{Q}_i(1-p) = Z_{n-k,n} ((k+1)/((n+1)\times p) \hat{A}(i/n))^{H_{k,n}},

with Hk,nH_{k,n} the Hill estimator. Here, it is assumed that we have equidistant covariates xi=i/nx_i=i/n.

See Section 4.4.1 in Albrecher et al. (2017) for more details.

Returns

A list with following components: - k: Vector of the values of the tail parameter kk.

  • Q: Vector of the corresponding quantile estimates.

  • p: The used exceedance probability.

References

Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.

Author(s)

Tom Reynkens.

See Also

ProbReg, ScaleReg, Quant

Examples

data(norwegianfire) Z <- norwegianfire$size[norwegianfire$year==76] i <- 100 n <- length(Z) # Scale estimator in i/n A <- ScaleReg(i/n, Z, h=0.5, kernel = "epanechnikov")$A # Small exceedance probability q <- 10^6 ProbReg(Z, A, q, plot=TRUE) # Large quantile p <- 10^(-5) QuantReg(Z, A, p, plot=TRUE)
  • Maintainer: Tom Reynkens
  • License: GPL (>= 2)
  • Last published: 2024-12-02