Estimator of the scale parameter in the regression case where γ is constant and the regression modelling is thus placed solely on the scale parameter.
ScaleReg(s, Z, kernel = c("normal","uniform","triangular","epanechnikov","biweight"), h, plot =TRUE, add =FALSE, main ="Estimates of scale parameter",...)
Arguments
s: Point to evaluate the scale estimator in.
Z: Vector of n observations (from the response variable).
kernel: The kernel used in the estimator. One of "normal" (default), "uniform", "triangular", "epanechnikov" and "biweight".
h: The bandwidth used in the kernel function.
plot: Logical indicating if the estimates should be plotted as a function of k, default is FALSE.
add: Logical indicating if the estimates should be added to an existing plot, default is FALSE.
main: Title for the plot, default is "Estimates of scale parameter".
...: Additional arguments for the plot function, see plot for more details.
Details
The scale estimator is computed as
A^(s)=1/(k+1)i=1∑n1Zi>Zn−k,nKh(s−i/n)
with Kh(x)=K(x/h)/h,K the kernel function and h the bandwidth. Here, it is assumed that we have equidistant covariates xi=i/n.
See Section 4.4.1 in Albrecher et al. (2017) for more details.
Returns
A list with following components: - k: Vector of the values of the tail parameter k.
A: Vector of the corresponding scale estimates.
References
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Author(s)
Tom Reynkens
See Also
ProbReg, QuantReg, scale, Hill
Examples
data(norwegianfire)Z <- norwegianfire$size[norwegianfire$year==76]i <-100n <- length(Z)# Scale estimator in i/nA <- ScaleReg(i/n, Z, h=0.5, kernel ="epanechnikov")$A
# Small exceedance probabilityq <-10^6ProbReg(Z, A, q, plot=TRUE)# Large quantilep <-10^(-5)QuantReg(Z, A, p, plot=TRUE)