Compute Value-at-Risk (VaR1−p=Q(1−p)) of the fitted spliced distribution.
VaR(p, splicefit)
Arguments
p: The exceedance probability (we estimate VaR1−p=Q(1−p)).
splicefit: A SpliceFit object, e.g. output from SpliceFitPareto, SpliceFiticPareto or SpliceFitGPD.
Details
See Reynkens et al. (2017) and Section 4.6 of Albrecher et al. (2017) for details.
Note that VaR(p, splicefit) corresponds to qSplice(p, splicefit, lower.tail = FALSE).
Returns
Vector of quantiles VaR1−p=Q(1−p).
References
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Reynkens, T., Verbelen, R., Beirlant, J. and Antonio, K. (2017). "Modelling Censored Losses Using Splicing: a Global Fit Strategy With Mixed Erlang and Extreme Value Distributions". Insurance: Mathematics and Economics, 77, 65--77.
Verbelen, R., Gong, L., Antonio, K., Badescu, A. and Lin, S. (2015). "Fitting Mixtures of Erlangs to Censored and Truncated Data Using the EM Algorithm." Astin Bulletin, 45, 729--758
Author(s)
Tom Reynkens with R code from Roel Verbelen for the mixed Erlang quantiles.