Computes the EPD estimates adapted for right censored data.
cEPD(data, censored, rho =-1, beta =NULL, logk =FALSE, plot =FALSE, add =FALSE, main ="EPD estimates of the EVI",...)
Arguments
data: Vector of n observations.
censored: A logical vector of length n indicating if an observation is censored.
rho: A parameter for the ρ-estimator of Fraga Alves et al. (2003) when strictly positive or choice(s) for ρ if negative. Default is -1.
beta: Parameter for EPD (β=−ρ/γ). If NULL (default), beta is estimated by −ρ/Hk,n with Hk,n the Hill estimator.
logk: Logical indicating if the estimates are plotted as a function of log(k) (logk=TRUE) or as a function of k. Default is FALSE.
plot: Logical indicating if the estimates of γ should be plotted as a function of k, default is FALSE.
add: Logical indicating if the estimates of γ should be added to an existing plot, default is FALSE.
main: Title for the plot, default is "EPD estimates of the EVI".
...: Additional arguments for the plot function, see plot for more details.
Details
The function EPD uses τ which is equal to −β.
This estimator is only suitable for right censored data.
Returns
A list with following components: - k: Vector of the values of the tail parameter k.
gamma1: Vector of the corresponding estimates for the γ parameter of the EPD.
kappa1: Vector of the corresponding MLE estimates for the κ parameter of the EPD.
beta: Vector of estimates for (or values of) the β parameter of the EPD.
Delta: Difference between gamma1 and the Hill estimator for censored data.
References
Beirlant, J., Bardoutsos, A., de Wet, T. and Gijbels, I. (2016). "Bias Reduced Tail Estimation for Censored Pareto Type Distributions." Statistics & Probability Letters, 109, 78--88.
Fraga Alves, M.I. , Gomes, M.I. and de Haan, L. (2003). "A New Class of Semi-parametric Estimators of the Second Order Parameter." Portugaliae Mathematica, 60, 193--214.
Author(s)
Tom Reynkens based on R code from Anastasios Bardoutsos.
See Also
EPD, cProbEPD, cGPDmle
Examples
# Set seedset.seed(29072016)# Pareto random sampleX <- rpareto(500, shape=2)# Censoring variableY <- rpareto(500, shape=1)# Observed sampleZ <- pmin(X, Y)# Censoring indicatorcensored <-(X>Y)# EPD estimator adapted for right censoringcepd <- cEPD(Z, censored=censored, plot=TRUE)