cHill function

Hill estimator for right censored data

Hill estimator for right censored data

Computes the Hill estimator for positive extreme value indices, adapted for right censoring, as a function of the tail parameter kk (Beirlant et al., 2007). Optionally, these estimates are plotted as a function of kk.

cHill(data, censored, logk = FALSE, plot = FALSE, add = FALSE, main = "Hill estimates of the EVI", ...)

Arguments

  • data: Vector of nn observations.
  • censored: A logical vector of length nn indicating if an observation is censored.
  • logk: Logical indicating if the estimates are plotted as a function of log(k)\log(k) (logk=TRUE) or as a function of kk. Default is FALSE.
  • plot: Logical indicating if the estimates of γ1\gamma_1 should be plotted as a function of kk, default is FALSE.
  • add: Logical indicating if the estimates of γ1\gamma_1 should be added to an existing plot, default is FALSE.
  • main: Title for the plot, default is "Hill estimates of the EVI".
  • ...: Additional arguments for the plot function, see plot for more details.

Details

The Hill estimator adapted for right censored data is equal to the ordinary Hill estimator Hk,nH_{k,n} divided by the proportion of the kk largest observations that is non-censored.

This estimator is only suitable for right censored data, use icHill for interval censored data.

See Section 4.3.2 of Albrecher et al. (2017) for more details.

Returns

A list with following components: - k: Vector of the values of the tail parameter kk.

  • gamma1: Vector of the corresponding Hill estimates.

References

Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.

Beirlant, J., Guillou, A., Dierckx, G. and Fils-Villetard, A. (2007). "Estimation of the Extreme Value Index and Extreme Quantiles Under Random Censoring." Extremes, 10, 151--174.

Author(s)

Tom Reynkens

See Also

Hill, icHill, cParetoQQ, cProb, cQuant

Examples

# Set seed set.seed(29072016) # Pareto random sample X <- rpareto(500, shape=2) # Censoring variable Y <- rpareto(500, shape=1) # Observed sample Z <- pmin(X, Y) # Censoring indicator censored <- (X>Y) # Hill estimator adapted for right censoring chill <- cHill(Z, censored=censored, plot=TRUE)
  • Maintainer: Tom Reynkens
  • License: GPL (>= 2)
  • Last published: 2024-12-02