Computes the Method of Moment estimates adapted for right censored data.
cMoment(data, censored, logk =FALSE, plot =FALSE, add =FALSE, main ="Moment estimates of the EVI",...)
Arguments
data: Vector of n observations.
censored: A logical vector of length n indicating if an observation is censored.
logk: Logical indicating if the estimates are plotted as a function of log(k) (logk=TRUE) or as a function of k. Default is FALSE.
plot: Logical indicating if the estimates of γ1 should be plotted as a function of k, default is FALSE.
add: Logical indicating if the estimates of γ1 should be added to an existing plot, default is FALSE.
main: Title for the plot, default is "Moment estimates of the EVI".
...: Additional arguments for the plot function, see plot for more details.
Details
The moment estimator adapted for right censored data is equal to the ordinary moment estimator divided by the proportion of the k largest observations that is non-censored.
This estimator is only suitable for right censored data.
Returns
A list with following components: - k: Vector of the values of the tail parameter k.
gamma1: Vector of the corresponding moment estimates.
References
Einmahl, J.H.J., Fils-Villetard, A. and Guillou, A. (2008). "Statistics of Extremes Under Random Censoring." Bernoulli, 14, 207--227.
Author(s)
Tom Reynkens
See Also
Moment, cProbMOM, cQuantMOM
Examples
# Set seedset.seed(29072016)# Pareto random sampleX <- rpareto(500, shape=2)# Censoring variableY <- rpareto(500, shape=1)# Observed sampleZ <- pmin(X, Y)# Censoring indicatorcensored <-(X>Y)# Moment estimator adapted for right censoringcmom <- cMoment(Z, censored=censored, plot=TRUE)