cParetoQQ function

Pareto quantile plot for right censored data

Pareto quantile plot for right censored data

Pareto QQ-plot adapted for right censored data.

cParetoQQ(data, censored, plot = TRUE, main = "Pareto QQ-plot", ...)

Arguments

  • data: Vector of nn observations.
  • censored: A logical vector of length nn indicating if an observation is censored.
  • plot: Logical indicating if the quantiles should be plotted in a Pareto QQ-plot, default is TRUE.
  • main: Title for the plot, default is "Pareto QQ-plot".
  • ...: Additional arguments for the plot function, see plot for more details.

Details

The Pareto QQ-plot adapted for right censoring is given by

(log(1Fkm(Zj,n)),logZj,n) ( -\log(1-F_{km}(Z_{j,n})), \log Z_{j,n} )

for j=1,,n1,j=1,\ldots,n-1,

with Zi,nZ_{i,n} the ii-th order statistic of the data and FkmF_{km} the Kaplan-Meier estimator for the CDF. Hence, it has the same empirical quantiles as an ordinary Pareto QQ-plot but replaces the theoretical quantiles log(1j/(n+1))-\log(1-j/(n+1)) by log(1Fkm(Zj,n))-\log(1-F_{km}(Z_{j,n})).

This QQ-plot is only suitable for right censored data, use icParetoQQ for interval censored data.

Returns

A list with following components: - pqq.the: Vector of the theoretical quantiles, see Details.

  • pqq.emp: Vector of the empirical quantiles from the log-transformed data.

References

Beirlant, J., Guillou, A., Dierckx, G. and Fils-Villetard, A. (2007). "Estimation of the Extreme Value Index and Extreme Quantiles Under Random Censoring." Extremes, 10, 151--174.

Author(s)

Tom Reynkens

See Also

ParetoQQ, icParetoQQ, cExpQQ, cLognormalQQ, cWeibullQQ, cHill, KaplanMeier

Examples

# Set seed set.seed(29072016) # Pareto random sample X <- rpareto(500, shape=2) # Censoring variable Y <- rpareto(500, shape=1) # Observed sample Z <- pmin(X, Y) # Censoring indicator censored <- (X>Y) # Pareto QQ-plot adapted for right censoring cParetoQQ(Z, censored=censored)
  • Maintainer: Tom Reynkens
  • License: GPL (>= 2)
  • Last published: 2024-12-02