cProb function

Estimator of small exceedance probabilities and large return periods using censored Hill

Estimator of small exceedance probabilities and large return periods using censored Hill

Computes estimates of a small exceedance probability P(X>q)P(X>q) or large return period 1/P(X>q)1/P(X>q) using the estimates for the EVI obtained from the Hill estimator adapted for right censoring.

cProb(data, censored, gamma1, q, plot = FALSE, add = FALSE, main = "Estimates of small exceedance probability", ...) cReturn(data, censored, gamma1, q, plot = FALSE, add = FALSE, main = "Estimates of large return period", ...)

Arguments

  • data: Vector of nn observations.

  • censored: A logical vector of length nn indicating if an observation is censored.

  • gamma1: Vector of n1n-1 estimates for the EVI obtained from cHill.

  • q: The used large quantile (we estimate P(X>q)P(X>q) or 1/P(X>q)1/P(X>q) for qq large).

  • plot: Logical indicating if the estimates should be plotted as a function of kk, default is FALSE.

  • add: Logical indicating if the estimates should be added to an existing plot, default is FALSE.

  • main: Title for the plot, default is "Estimates of small exceedance probability" for cProb

    and "Estimates of large return period" for cReturn.

  • ...: Additional arguments for the plot function, see plot for more details.

Details

The probability is estimated as

P^(X>q)=(1km)×(q/Znk,n)1/Hk,nc \hat{P}(X>q)=(1-km) \times (q/Z_{n-k,n})^{-1/H_{k,n}^c}

with Zi,nZ_{i,n} the ii-th order statistic of the data, Hk,ncH_{k,n}^c

the Hill estimator adapted for right censoring and kmkm the Kaplan-Meier estimator for the CDF evaluated in Znk,nZ_{n-k,n}.

Returns

A list with following components: - k: Vector of the values of the tail parameter kk.

  • P: Vector of the corresponding probability estimates, only returned for cProb.

  • R: Vector of the corresponding estimates for the return period, only returned for cReturn.

  • q: The used large quantile.

References

Beirlant, J., Guillou, A., Dierckx, G. and Fils-Villetard, A. (2007). "Estimation of the Extreme Value Index and Extreme Quantiles Under Random Censoring." Extremes, 10, 151--174.

Author(s)

Tom Reynkens

See Also

cHill, cQuant, Prob, KaplanMeier

Examples

# Set seed set.seed(29072016) # Pareto random sample X <- rpareto(500, shape=2) # Censoring variable Y <- rpareto(500, shape=1) # Observed sample Z <- pmin(X, Y) # Censoring indicator censored <- (X>Y) # Hill estimator adapted for right censoring chill <- cHill(Z, censored=censored, plot=TRUE) # Small exceedance probability q <- 10 cProb(Z, censored=censored, gamma1=chill$gamma1, q=q, plot=TRUE) # Return period cReturn(Z, censored=censored, gamma1=chill$gamma1, q=q, plot=TRUE)
  • Maintainer: Tom Reynkens
  • License: GPL (>= 2)
  • Last published: 2024-12-02