Estimator of small exceedance probabilities and large return periods using censored EPD
Estimator of small exceedance probabilities and large return periods using censored EPD
Computes estimates of a small exceedance probability P(X>q) or large return period 1/P(X>q) using the parameters from the EPD fit adapted for right censoring.
cProbEPD(data, censored, gamma1, kappa1, beta, q, plot =FALSE, add =FALSE, main ="Estimates of small exceedance probability",...)cReturnEPD(data, censored, gamma1, kappa1, beta, q, plot =FALSE, add =FALSE, main ="Estimates of large return period",...)
Arguments
data: Vector of n observations.
censored: A logical vector of length n indicating if an observation is censored.
gamma1: Vector of n−1 estimates for the EVI obtained from cEPD.
kappa1: Vector of n−1 estimates for κ1 obtained from cEPD.
beta: Vector of n−1 estimates for β obtained from cEPD.
q: The used large quantile (we estimate P(X>q) or 1/P(X>q) for q large).
plot: Logical indicating if the estimates should be plotted as a function of k, default is FALSE.
add: Logical indicating if the estimates should be added to an existing plot, default is FALSE.
main: Title for the plot, default is "Estimates of small exceedance probability" for cProbEPD
and "Estimates of large return period" for cReturnEPD.
...: Additional arguments for the plot function, see plot for more details.
Details
The probability is estimated as
P^(X>q)=(1−km)×(1−F(q))
with F
the CDF of the EPD with estimated parameters γ^1, κ^1 and τ^=−β^
and km the Kaplan-Meier estimator for the CDF evaluated in Zn−k,n (the (k+1)-th largest data point).
Returns
A list with following components: - k: Vector of the values of the tail parameter k.
P: Vector of the corresponding probability estimates, only returned for cProbEPD.
R: Vector of the corresponding estimates for the return period, only returned for cReturnEPD.
q: The used large quantile.
References
Beirlant, J., Bardoutsos, A., de Wet, T. and Gijbels, I. (2016). "Bias Reduced Tail Estimation for Censored Pareto Type Distributions." Statistics & Probability Letters, 109, 78--88.
Author(s)
Tom Reynkens.
See Also
cEPD, ProbEPD, Prob, KaplanMeier
Examples
# Set seedset.seed(29072016)# Pareto random sampleX <- rpareto(500, shape=2)# Censoring variableY <- rpareto(500, shape=1)# Observed sampleZ <- pmin(X, Y)# Censoring indicatorcensored <-(X>Y)# EPD estimator adapted for right censoringcepd <- cEPD(Z, censored=censored, plot=TRUE)# Small exceedance probabilityq <-10cProbEPD(Z, censored=censored, gamma1=cepd$gamma1, kappa1=cepd$kappa1, beta=cepd$beta, q=q, plot=TRUE)# Return periodcReturnEPD(Z, censored=censored, gamma1=cepd$gamma1, kappa1=cepd$kappa1, beta=cepd$beta, q=q, plot=TRUE)