cProbGPD function

Estimator of small exceedance probabilities and large return periods using censored GPD-MLE

Estimator of small exceedance probabilities and large return periods using censored GPD-MLE

Computes estimates of a small exceedance probability P(X>q)P(X>q) or large return period 1/P(X>q)1/P(X>q) using the GPD-ML estimator adapted for right censoring.

cProbGPD(data, censored, gamma1, sigma1, q, plot = FALSE, add = FALSE, main = "Estimates of small exceedance probability", ...) cReturnGPD(data, censored, gamma1, sigma1, q, plot = FALSE, add = FALSE, main = "Estimates of large return period", ...)

Arguments

  • data: Vector of nn observations.

  • censored: A logical vector of length nn indicating if an observation is censored.

  • gamma1: Vector of n1n-1 estimates for the EVI obtained from cGPDmle.

  • sigma1: Vector of n1n-1 estimates for σ1\sigma_1 obtained from cGPDmle.

  • q: The used large quantile (we estimate P(X>q)P(X>q) or 1/P(X>q)1/P(X>q) for qq large).

  • plot: Logical indicating if the estimates should be plotted as a function of kk, default is FALSE.

  • add: Logical indicating if the estimates should be added to an existing plot, default is FALSE.

  • main: Title for the plot, default is "Estimates of small exceedance probability" for cProbGPD

    and "Estimates of large return period" for cReturnGPD.

  • ...: Additional arguments for the plot function, see plot for more details.

Details

The probability is estimated as

P^(X>q)=(1km)×(1+γ^1/ak,n×(qZnk,n))1/γ^1 \hat{P}(X>q)=(1-km) \times (1+ \hat{\gamma}_1/a_{k,n} \times (q-Z_{n-k,n}))^{-1/\hat{\gamma}_1}

with Zi,nZ_{i,n} the ii-th order statistic of the data, γ^1\hat{\gamma}_1 the generalised Hill estimator adapted for right censoring and kmkm the Kaplan-Meier estimator for the CDF evaluated in Znk,nZ_{n-k,n}. The value aa is defined as

ak,n=σ^1/p^k a_{k,n} = \hat{\sigma}_1 / \hat{p}_k

with σ^1\hat{\sigma}_1 the ML estimate for σ1\sigma_1

and p^k\hat{p}_k the proportion of the kk largest observations that is non-censored.

Returns

A list with following components: - k: Vector of the values of the tail parameter kk.

  • P: Vector of the corresponding probability estimates, only returned for cProbGPD.

  • R: Vector of the corresponding estimates for the return period, only returned for cReturnGPD.

  • q: The used large quantile.

References

Einmahl, J.H.J., Fils-Villetard, A. and Guillou, A. (2008). "Statistics of Extremes Under Random Censoring." Bernoulli, 14, 207--227.

Author(s)

Tom Reynkens

See Also

cQuantGPD, cGPDmle, ProbGPD, Prob, KaplanMeier

Examples

# Set seed set.seed(29072016) # Pareto random sample X <- rpareto(500, shape=2) # Censoring variable Y <- rpareto(500, shape=1) # Observed sample Z <- pmin(X, Y) # Censoring indicator censored <- (X>Y) # GPD-MLE estimator adapted for right censoring cpot <- cGPDmle(Z, censored=censored, plot=TRUE) # Exceedance probability q <- 10 cProbGPD(Z, gamma1=cpot$gamma1, sigma1=cpot$sigma1, censored=censored, q=q, plot=TRUE) # Return period cReturnGPD(Z, gamma1=cpot$gamma1, sigma1=cpot$sigma1, censored=censored, q=q, plot=TRUE)
  • Maintainer: Tom Reynkens
  • License: GPL (>= 2)
  • Last published: 2024-12-02