Estimator of small exceedance probabilities and large return periods using censored MOM
Estimator of small exceedance probabilities and large return periods using censored MOM
Computes estimates of a small exceedance probability P(X>q) or large return period 1/P(X>q) using the Method of Moments estimates for the EVI adapted for right censoring.
cProbMOM(data, censored, gamma1, q, plot =FALSE, add =FALSE, main ="Estimates of small exceedance probability",...)cReturnMOM(data, censored, gamma1, q, plot =FALSE, add =FALSE, main ="Estimates of large return period",...)
Arguments
data: Vector of n observations.
censored: A logical vector of length n indicating if an observation is censored.
gamma1: Vector of n−1 estimates for the EVI obtained from cMoment.
q: The used large quantile (we estimate P(X>q) or 1/P(X>q) for q large).
plot: Logical indicating if the estimates should be plotted as a function of k, default is FALSE.
add: Logical indicating if the estimates should be added to an existing plot, default is FALSE.
main: Title for the plot, default is "Estimates of small exceedance probability" for cProbMOM
and "Estimates of large return period" for cReturnMOM.
...: Additional arguments for the plot function, see plot for more details.
with Zi,n the i-th order statistic of the data, γ^1 the MOM estimator adapted for right censoring and km the Kaplan-Meier estimator for the CDF evaluated in Zn−k,n. The value a is defined as
ak,n=Zn−k,nHk,n(1−min(γ^1,0))/p^k
with Hk,n the ordinary Hill estimator and p^k the proportion of the k largest observations that is non-censored.
Returns
A list with following components: - k: Vector of the values of the tail parameter k.
P: Vector of the corresponding probability estimates, only returned for cProbMOM.
R: Vector of the corresponding estimates for the return period, only returned for cReturnMOM.
q: The used large quantile.
References
Einmahl, J.H.J., Fils-Villetard, A. and Guillou, A. (2008). "Statistics of Extremes Under Random Censoring." Bernoulli, 14, 207--227.
Author(s)
Tom Reynkens
See Also
cQuantMOM, cMoment, ProbMOM, Prob, KaplanMeier
Examples
# Set seedset.seed(29072016)# Pareto random sampleX <- rpareto(500, shape=2)# Censoring variableY <- rpareto(500, shape=1)# Observed sampleZ <- pmin(X, Y)# Censoring indicatorcensored <-(X>Y)# Moment estimator adapted for right censoringcmom <- cMoment(Z, censored=censored, plot=TRUE)# Small exceedance probabilityq <-10cProbMOM(Z, censored=censored, gamma1=cmom$gamma1, q=q, plot=TRUE)# Return periodcReturnMOM(Z, censored=censored, gamma1=cmom$gamma1, q=q, plot=TRUE)