Computes estimates of large quantiles Q(1−p) using the estimates for the EVI obtained from the Hill estimator adapted for right censoring.
cQuant(data, censored, gamma1, p, plot =FALSE, add =FALSE, main ="Estimates of extreme quantile",...)
Arguments
data: Vector of n observations.
censored: A logical vector of length n indicating if an observation is censored.
gamma1: Vector of n−1 estimates for the EVI obtained from cHill.
p: The exceedance probability of the quantile (we estimate Q(1−p) for p small).
plot: Logical indicating if the estimates should be plotted as a function of k, default is FALSE.
add: Logical indicating if the estimates should be added to an existing plot, default is FALSE.
main: Title for the plot, default is "Estimates of extreme quantile".
...: Additional arguments for the plot function, see plot for more details.
Details
The quantile is estimated as
Q^(1−p)=Zn−k,n×((1−km)/p)Hk,nc
with Zi,n the i-th order statistic of the data, Hk,nc
the Hill estimator adapted for right censoring and km the Kaplan-Meier estimator for the CDF evaluated in Zn−k,n.
Returns
A list with following components: - k: Vector of the values of the tail parameter k.
Q: Vector of the corresponding quantile estimates.
p: The used exceedance probability.
References
Beirlant, J., Guillou, A., Dierckx, G. and Fils-Villetard, A. (2007). "Estimation of the Extreme Value Index and Extreme Quantiles Under Random Censoring." Extremes, 10, 151--174.
Author(s)
Tom Reynkens.
See Also
cHill, cProb, Quant, KaplanMeier
Examples
# Set seedset.seed(29072016)# Pareto random sampleX <- rpareto(500, shape=2)# Censoring variableY <- rpareto(500, shape=1)# Observed sampleZ <- pmin(X, Y)# Censoring indicatorcensored <-(X>Y)# Hill estimator adapted for right censoringchill <- cHill(Z, censored=censored, plot=TRUE)# Large quantilep <-10^(-4)cQuant(Z, gamma1=chill$gamma, censored=censored, p=p, plot=TRUE)