crSurv function

Non-parametric estimator of conditional survival function

Non-parametric estimator of conditional survival function

Non-parametric estimator of the conditional survival function of YY given XX for censored data, see Akritas and Van Keilegom (2003).

crSurv(x, y, Xtilde, Ytilde, censored, h, kernel = c("biweight", "normal", "uniform", "triangular", "epanechnikov"))

Arguments

  • x: The value of the conditioning variable XX to evaluate the survival function at. x needs to be a single number or a vector with the same length as y.
  • y: The value(s) of the variable YY to evaluate the survival function at.
  • Xtilde: Vector of length nn containing the censored sample of the conditioning variable XX.
  • Ytilde: Vector of length nn containing the censored sample of the variable YY.
  • censored: A logical vector of length nn indicating if an observation is censored.
  • h: Bandwidth of the non-parametric estimator.
  • kernel: Kernel of the non-parametric estimator. One of "biweight" (default), "normal", "uniform", "triangular" and "epanechnikov".

Details

We estimate the conditional survival function

1FYX(yx) 1-F_{Y|X}(y|x)

using the censored sample (X~i,Y~i)(\tilde{X}_i, \tilde{Y}_i), for i=1,,ni=1,\ldots,n, where XX and YY are censored at the same time. We assume that YY and the censoring variable are conditionally independent given XX.

The estimator is given by

1F^YX(yx)=Y~iy(1Wn,i(x;hn)/(j=1nWn,j(x;hn)I{Y~jY~i}))Δi 1-\hat{F}_{Y|X}(y|x) = \prod_{\tilde{Y}_i \le y} (1-W_{n,i}(x;h_n)/(\sum_{j=1}^nW_{n,j}(x;h_n) I\{\tilde{Y}_j \ge \tilde{Y}_i\}))^{\Delta_i}

where Δi=1\Delta_i=1 when (X~i,Y~i)(\tilde{X}_i, \tilde{Y}_i) is censored and 0 otherwise. The weights are given by

Wn,i(x;hn)=K((xX~i)/hn)/Δj=1K((xX~j)/hn) W_{n,i}(x;h_n) = K((x-\tilde{X}_i)/h_n)/\sum_{\Delta_j=1}K((x-\tilde{X}_j)/h_n)

when Δi=1\Delta_i=1 and 0 otherwise.

See Section 4.4.3 in Albrecher et al. (2017) for more details.

Returns

Estimates for 1FYX(yx)1-F_{Y|X}(y|x) as described above.

References

Akritas, M.G. and Van Keilegom, I. (2003). "Estimation of Bivariate and Marginal Distributions With Censored Data." Journal of the Royal Statistical Society: Series B, 65, 457--471.

Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.

Author(s)

Tom Reynkens

See Also

crParetoQQ, crHill

Examples

# Set seed set.seed(29072016) # Pareto random sample Y <- rpareto(200, shape=2) # Censoring variable C <- rpareto(200, shape=1) # Observed (censored) sample of variable Y Ytilde <- pmin(Y, C) # Censoring indicator censored <- (Y>C) # Conditioning variable X <- seq(1, 10, length.out=length(Y)) # Observed (censored) sample of conditioning variable Xtilde <- X Xtilde[censored] <- X[censored] - runif(sum(censored), 0, 1) # Plot estimates of the conditional survival function x <- 5 y <- seq(0, 5, 1/100) plot(y, crSurv(x, y, Xtilde=Xtilde, Ytilde=Ytilde, censored=censored, h=5), type="l", xlab="y", ylab="Conditional survival function")
  • Maintainer: Tom Reynkens
  • License: GPL (>= 2)
  • Last published: 2024-12-02