genHill function

Generalised Hill estimator

Generalised Hill estimator

Computes the generalised Hill estimator for real extreme value indices as a function of the tail parameter kk. Optionally, these estimates are plotted as a function of kk.

genHill(data, gamma, logk = FALSE, plot = FALSE, add = FALSE, main = "Generalised Hill estimates of the EVI", ...)

Arguments

  • data: Vector of nn observations.
  • gamma: Vector of n1n-1 estimates for the EVI, typically Hill estimates are used.
  • logk: Logical indicating if the estimates are plotted as a function of log(k)\log(k) (logk=TRUE) or as a function of kk. Default is FALSE.
  • plot: Logical indicating if the estimates should be plotted as a function of kk, default is FALSE.
  • add: Logical indicating if the estimates should be added to an existing plot, default is FALSE.
  • main: Title for the plot, default is "Generalised Hill estimates of the EVI".
  • ...: Additional arguments for the plot function, see plot for more details.

Details

The generalised Hill estimator is an estimator for the slope of the kk last points of the generalised QQ-plot:

γ^k,nGH=1/kj=1klogUHj,nlogUHk+1,n \hat{\gamma}^{GH}_{k,n}=1/k\sum_{j=1}^k \log UH_{j,n}- \log UH_{k+1,n}

with UHj,n=Xnj,nHj,nUH_{j,n}=X_{n-j,n}H_{j,n} the UH scores and Hj,nH_{j,n} the Hill estimates. This is analogous to the (ordinary) Hill estimator which is the estimator of the slope of the kk last points of the Pareto QQ-plot when using constrained least squares.

See Section 4.2.2 of Albrecher et al. (2017) for more details.

Returns

A list with following components: - k: Vector of the values of the tail parameter kk.

  • gamma: Vector of the corresponding generalised Hill estimates.

References

Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.

Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.

Beirlant, J., Vynckier, P. and Teugels, J.L. (1996). "Excess Function and Estimation of the Extreme-value Index". Bernoulli, 2, 293--318.

Author(s)

Tom Reynkens based on S-Plus code from Yuri Goegebeur.

See Also

Hill, genQQ, Moment

Examples

data(soa) # Hill estimator H <- Hill(soa$size, plot=FALSE) # Moment estimator M <- Moment(soa$size) gH <- genHill(soa$size, gamma=H$gamma) # Plot estimates plot(H$k[1:5000], M$gamma[1:5000], xlab="k", ylab=expression(gamma), type="l", ylim=c(0.2,0.5)) lines(H$k[1:5000], gH$gamma[1:5000], lty=2) legend("topright", c("Moment", "Generalised Hill"), lty=1:2)
  • Maintainer: Tom Reynkens
  • License: GPL (>= 2)
  • Last published: 2024-12-02