Computes the generalised Hill estimator for real extreme value indices as a function of the tail parameter k. Optionally, these estimates are plotted as a function of k.
genHill(data, gamma, logk =FALSE, plot =FALSE, add =FALSE, main ="Generalised Hill estimates of the EVI",...)
Arguments
data: Vector of n observations.
gamma: Vector of n−1 estimates for the EVI, typically Hill estimates are used.
logk: Logical indicating if the estimates are plotted as a function of log(k) (logk=TRUE) or as a function of k. Default is FALSE.
plot: Logical indicating if the estimates should be plotted as a function of k, default is FALSE.
add: Logical indicating if the estimates should be added to an existing plot, default is FALSE.
main: Title for the plot, default is "Generalised Hill estimates of the EVI".
...: Additional arguments for the plot function, see plot for more details.
Details
The generalised Hill estimator is an estimator for the slope of the k last points of the generalised QQ-plot:
γ^k,nGH=1/kj=1∑klogUHj,n−logUHk+1,n
with UHj,n=Xn−j,nHj,n the UH scores and Hj,n the Hill estimates. This is analogous to the (ordinary) Hill estimator which is the estimator of the slope of the k last points of the Pareto QQ-plot when using constrained least squares.
See Section 4.2.2 of Albrecher et al. (2017) for more details.
Returns
A list with following components: - k: Vector of the values of the tail parameter k.
gamma: Vector of the corresponding generalised Hill estimates.
References
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Beirlant J., Goegebeur Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory and Applications, Wiley Series in Probability, Wiley, Chichester.
Beirlant, J., Vynckier, P. and Teugels, J.L. (1996). "Excess Function and Estimation of the Extreme-value Index". Bernoulli, 2, 293--318.
Author(s)
Tom Reynkens based on S-Plus code from Yuri Goegebeur.