icHill function

Hill estimator for interval censored data

Hill estimator for interval censored data

Computes the Hill estimator for positive extreme value indices, adapted for interval censoring, as a function of the tail parameter kk. Optionally, these estimates are plotted as a function of kk.

icHill(L, U, censored, trunclower = 0, truncupper = Inf, logk = FALSE, plot = TRUE, add = FALSE, main = "Hill estimates of the EVI", ...)

Arguments

  • L: Vector of length nn with the lower boundaries of the intervals for interval censored data or the observed data for right censored data.
  • U: Vector of length nn with the upper boundaries of the intervals.
  • censored: A logical vector of length nn indicating if an observation is censored.
  • trunclower: Lower truncation point. Default is 0.
  • truncupper: Upper truncation point. Default is Inf (no upper truncation).
  • logk: Logical indicating if the estimates are plotted as a function of log(k)\log(k) (logk=TRUE) or as a function of kk. Default is FALSE.
  • plot: Logical indicating if the estimates of γ\gamma should be plotted as a function of kk, default is FALSE.
  • add: Logical indicating if the estimates of γ\gamma should be added to an existing plot, default is FALSE.
  • main: Title for the plot, default is "Hill estimates of the EVI".
  • ...: Additional arguments for the plot function, see plot for more details.

Details

This estimator is given by

HTB(x)=(x(1F^TB(u))/udu)/(1F^TB(x)), H^{TB}(x)=(\int_x^{\infty} (1-\hat{F}^{TB}(u))/u du)/(1-\hat{F}^{TB}(x)),

where F^TB\hat{F}^{TB} is the Turnbull estimator for the CDF. More specifically, we use the values x=Q^TB(p)x=\hat{Q}^{TB}(p) for p=1/(n+1),,(n1)/(n+1)p=1/(n+1), \ldots, (n-1)/(n+1) where Q^TB(p)\hat{Q}^{TB}(p) is the empirical quantile function corresponding to the Turnbull estimator. We then denote

Hk,nTB=HTB(xnk,n) H^{TB}_{k,n}=H^{TB}(x_{n-k,n})

with

xnk,n=Q^TB((nk)/(n+1))=Q^TB(1(k+1)/(n+1)). x_{n-k,n}=\hat{Q}^{TB}((n-k)/(n+1))=\hat{Q}^{TB}(1-(k+1)/(n+1)).

Right censored data should be entered as L=l and U=truncupper, and left censored data should be entered as L=trunclower and U=u.

If the interval package is installed, the icfit function is used to compute the Turnbull estimator. Otherwise, survfit.formula from survival is used.

Use Hill for non-censored data or cHill for right censored data.

See Section 4.3 in Albrecher et al. (2017) for more details.

Returns

A list with following components: - k: Vector of the values of the tail parameter kk.

  • gamma: Vector of the corresponding Hill estimates.

  • X: Vector of thresholds xnk,nx_{n-k,n} used when estimating γ\gamma.

References

Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.

Author(s)

Tom Reynkens

See Also

cHill, Hill, MeanExcess_TB, icParetoQQ, Turnbull, icfit

Examples

# Pareto random sample X <- rpareto(500, shape=2) # Censoring variable Y <- rpareto(500, shape=1) # Observed sample Z <- pmin(X,Y) # Censoring indicator censored <- (X>Y) # Right boundary U <- Z U[censored] <- Inf # Hill estimator adapted for interval censoring icHill(Z, U, censored, ylim=c(0,1)) # Hill estimator adapted for right censoring cHill(Z, censored, lty=2, add=TRUE) # True value of gamma abline(h=1/2, lty=3, col="blue") # Legend legend("topright", c("icHill", "cHill"), lty=1:2)
  • Maintainer: Tom Reynkens
  • License: GPL (>= 2)
  • Last published: 2024-12-02