Computes the Hill estimator for positive extreme value indices, adapted for interval censoring, as a function of the tail parameter k. Optionally, these estimates are plotted as a function of k.
icHill(L, U, censored, trunclower =0, truncupper =Inf, logk =FALSE, plot =TRUE, add =FALSE, main ="Hill estimates of the EVI",...)
Arguments
L: Vector of length n with the lower boundaries of the intervals for interval censored data or the observed data for right censored data.
U: Vector of length n with the upper boundaries of the intervals.
censored: A logical vector of length n indicating if an observation is censored.
trunclower: Lower truncation point. Default is 0.
truncupper: Upper truncation point. Default is Inf (no upper truncation).
logk: Logical indicating if the estimates are plotted as a function of log(k) (logk=TRUE) or as a function of k. Default is FALSE.
plot: Logical indicating if the estimates of γ should be plotted as a function of k, default is FALSE.
add: Logical indicating if the estimates of γ should be added to an existing plot, default is FALSE.
main: Title for the plot, default is "Hill estimates of the EVI".
...: Additional arguments for the plot function, see plot for more details.
Details
This estimator is given by
HTB(x)=(∫x∞(1−F^TB(u))/udu)/(1−F^TB(x)),
where F^TB is the Turnbull estimator for the CDF. More specifically, we use the values x=Q^TB(p) for p=1/(n+1),…,(n−1)/(n+1) where Q^TB(p) is the empirical quantile function corresponding to the Turnbull estimator. We then denote
Hk,nTB=HTB(xn−k,n)
with
xn−k,n=Q^TB((n−k)/(n+1))=Q^TB(1−(k+1)/(n+1)).
Right censored data should be entered as L=l and U=truncupper, and left censored data should be entered as L=trunclower and U=u.
If the interval package is installed, the icfit function is used to compute the Turnbull estimator. Otherwise, survfit.formula from survival is used.
Use Hill for non-censored data or cHill for right censored data.
See Section 4.3 in Albrecher et al. (2017) for more details.
Returns
A list with following components: - k: Vector of the values of the tail parameter k.
gamma: Vector of the corresponding Hill estimates.
X: Vector of thresholds xn−k,n used when estimating γ.
References
Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.
Author(s)
Tom Reynkens
See Also
cHill, Hill, MeanExcess_TB, icParetoQQ, Turnbull, icfit
Examples
# Pareto random sampleX <- rpareto(500, shape=2)# Censoring variableY <- rpareto(500, shape=1)# Observed sampleZ <- pmin(X,Y)# Censoring indicatorcensored <-(X>Y)# Right boundaryU <- Z
U[censored]<-Inf# Hill estimator adapted for interval censoringicHill(Z, U, censored, ylim=c(0,1))# Hill estimator adapted for right censoringcHill(Z, censored, lty=2, add=TRUE)# True value of gammaabline(h=1/2, lty=3, col="blue")# Legendlegend("topright", c("icHill","cHill"), lty=1:2)