Density, distribution function, quantile function and random generation for the truncated Burr distribution (type XII).
dtburr(x, alpha, rho, eta =1, endpoint =Inf, log =FALSE)ptburr(x, alpha, rho, eta =1, endpoint =Inf, lower.tail =TRUE, log.p =FALSE)qtburr(p, alpha, rho, eta =1, endpoint =Inf, lower.tail =TRUE, log.p =FALSE)rtburr(n, alpha, rho, eta =1, endpoint =Inf)
Arguments
x: Vector of quantiles.
p: Vector of probabilities.
n: Number of observations.
alpha: The α parameter of the truncated Burr distribution, a strictly positive number.
rho: The ρ parameter of the truncated Burr distribution, a strictly negative number.
eta: The η parameter of the truncated Burr distribution, a strictly positive number. The default value is 1.
endpoint: Endpoint of the truncated Burr distribution. The default value is Inf for which the truncated Burr distribution corresponds to the ordinary Burr distribution.
log: Logical indicating if the densities are given as log(f), default is FALSE.
lower.tail: Logical indicating if the probabilities are of the form P(X≤x) (TRUE) or P(X>x) (FALSE). Default is TRUE.
log.p: Logical indicating if the probabilities are given as log(p), default is FALSE.
Details
The Cumulative Distribution Function (CDF) of the truncated Burr distribution is equal to FT(x)=F(x)/F(T) for x≤T where F is the CDF of the ordinary Burr distribution and T is the endpoint (truncation point) of the truncated Burr distribution.
Returns
dtburr gives the density function evaluated in x, ptburr the CDF evaluated in x and qtburr the quantile function evaluated in p. The length of the result is equal to the length of x or p.
rtburr returns a random sample of length n.
Author(s)
Tom Reynkens.
See Also
Burr, Distributions
Examples
# Plot of the PDFx <- seq(0,10,0.01)plot(x, dtburr(x, alpha=2, rho=-1, endpoint=9), xlab="x", ylab="PDF", type="l")# Plot of the CDFx <- seq(0,10,0.01)plot(x, ptburr(x, alpha=2, rho=-1, endpoint=9), xlab="x", ylab="CDF", type="l")