trDT function

Truncation odds

Truncation odds

Estimates of truncation odds of the truncated probability mass under the untruncated distribution using truncated Hill.

trDT(data, r = 1, gamma, plot = FALSE, add = FALSE, main = "Estimates of DT", ...)

Arguments

  • data: Vector of nn observations.
  • r: Trimming parameter, default is 1 (no trimming).
  • gamma: Vector of n1n-1 estimates for the EVI obtained from trHill.
  • plot: Logical indicating if the estimates of DTD_T should be plotted as a function of kk, default is FALSE.
  • add: Logical indicating if the estimates of DTD_T should be added to an existing plot, default is FALSE.
  • main: Title for the plot, default is "Estimates of DT".
  • ...: Additional arguments for the plot function, see plot for more details.

Details

The truncation odds is defined as

DT=(1F(T))/F(T) D_T=(1-F(T))/F(T)

with TT the upper truncation point and FF the CDF of the untruncated distribution (e.g. Pareto distribution).

We estimate this truncation odds as

D^T=max{(k+1)/(n+1)(Rr,k,n1/γk1/(k+1))/(1Rr,k,n1/γk),0} \hat{D}_T=\max\{ (k+1)/(n+1) ( R_{r,k,n}^{1/\gamma_k} - 1/(k+1) ) / (1-R_{r,k,n}^{1/\gamma_k}), 0\}

with Rr,k,n=Xnk,n/Xnr+1,nR_{r,k,n} = X_{n-k,n} / X_{n-r+1,n}.

See Beirlant et al. (2016) or Section 4.2.3 of Albrecher et al. (2017) for more details.

Returns

A list with following components: - k: Vector of the values of the tail parameter kk.

  • DT: Vector of the corresponding estimates for the truncation odds DTD_T.

References

Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.

Beirlant, J., Fraga Alves, M.I. and Gomes, M.I. (2016). "Tail fitting for Truncated and Non-truncated Pareto-type Distributions." Extremes, 19, 429--462.

Author(s)

Tom Reynkens based on R code of Dries Cornilly.

See Also

trHill, trEndpoint, trQuant, trDTMLE

Examples

# Sample from truncated Pareto distribution. # truncated at 99% quantile shape <- 2 X <- rtpareto(n=1000, shape=shape, endpoint=qpareto(0.99, shape=shape)) # Truncated Hill estimator trh <- trHill(X, plot=TRUE, ylim=c(0,2)) dt <- trDT(X, gamma=trh$gamma, plot=TRUE, ylim=c(0,0.05))
  • Maintainer: Tom Reynkens
  • License: GPL (>= 2)
  • Last published: 2024-12-02