trEndpoint function

Estimator of endpoint

Estimator of endpoint

Estimator of endpoint using truncated Hill estimates.

trEndpoint(data, r = 1, gamma, plot = FALSE, add = FALSE, main = "Estimates of endpoint", ...)

Arguments

  • data: Vector of nn observations.
  • r: Trimming parameter, default is 1 (no trimming).
  • gamma: Vector of n1n-1 estimates for the EVI obtained from trHill.
  • plot: Logical indicating if the estimates of TT should be plotted as a function of kk, default is FALSE.
  • add: Logical indicating if the estimates of TT should be added to an existing plot, default is FALSE.
  • main: Title for the plot, default is "Estimates of endpoint".
  • ...: Additional arguments for the plot function, see plot for more details.

Details

The endpoint is estimated as

T^k,n=max{Xnk,n(((Xnk,n/Xn,n)1/γ^k1/(k+1))/(11/(k+1)))γ^k,Xn,n} \hat{T}_{k,n} = \max\{X_{n-k,n} ( ((X_{n-k,n}/X_{n,n})^{1/\hat{\gamma}_k} - 1/(k+1)) / (1-1/(k+1)))^{-\hat{\gamma}_k}, X_{n,n}\}

with γ^k\hat{\gamma}_k the Hill estimates adapted for truncation.

See Beirlant et al. (2016) or Section 4.2.3 of Albrecher et al. (2017) for more details.

Returns

A list with following components: - k: Vector of the values of the tail parameter kk.

  • Tk: Vector of the corresponding estimates for the endpoint TT.

References

Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.

Beirlant, J., Fraga Alves, M.I. and Gomes, M.I. (2016). "Tail fitting for Truncated and Non-truncated Pareto-type Distributions." Extremes, 19, 429--462.

Author(s)

Tom Reynkens based on R code of Dries Cornilly.

See Also

trHill, trDT, trEndpointMLE

Examples

# Sample from truncated Pareto distribution. # truncated at 99% quantile shape <- 2 X <- rtpareto(n=1000, shape=shape, endpoint=qpareto(0.99, shape=shape)) # Truncated Hill estimator trh <- trHill(X, plot=TRUE, ylim=c(0,2)) # Endpoint trEndpoint(X, gamma=trh$gamma, plot=TRUE, ylim=c(8,12)) abline(h=qpareto(0.99, shape=shape), lty=2)
  • Maintainer: Tom Reynkens
  • License: GPL (>= 2)
  • Last published: 2024-12-02