trEndpointMLE function

Estimator of endpoint

Estimator of endpoint

Estimator of endpoint using truncated ML estimates.

trEndpointMLE(data, gamma, tau, plot = FALSE, add = FALSE, main = "Estimates of endpoint", ...)

Arguments

  • data: Vector of nn observations.
  • gamma: Vector of n1n-1 estimates for the EVI obtained from trMLE.
  • tau: Vector of n1n-1 estimates for the τ\tau obtained from trMLE.
  • plot: Logical indicating if the estimates of TT should be plotted as a function of kk, default is FALSE.
  • add: Logical indicating if the estimates of TT should be added to an existing plot, default is FALSE.
  • main: Title for the plot, default is "Estimates of endpoint".
  • ...: Additional arguments for the plot function, see plot for more details.

Details

The endpoint is estimated as

T^k=Xnk,n+1/τ^k[((11/k)/((1+τ^k(Xn,nXnk,n))1/ξ^k1/k))ξ^k1] \hat{T}_{k} = X_{n-k,n} + 1/\hat{\tau}_k[( (1-1/k)/((1+ \hat{\tau}_k (X_{n,n}-X_{n-k,n}))^{-1/\hat{\xi}_k}-1/k))^{\hat{\xi}_k} -1]

with γ^k\hat{\gamma}_k and τ^k\hat{\tau}_k the truncated ML estimates for γ\gamma and τ\tau.

See Beirlant et al. (2017) for more details.

Returns

A list with following components: - k: Vector of the values of the tail parameter kk.

  • Tk: Vector of the corresponding estimates for the endpoint TT.

References

Beirlant, J., Fraga Alves, M. I. and Reynkens, T. (2017). "Fitting Tails Affected by Truncation". Electronic Journal of Statistics, 11(1), 2026--2065.

Author(s)

Tom Reynkens.

See Also

trMLE, trDTMLE, trProbMLE, trQuantMLE, trTestMLE, trEndpoint

Examples

# Sample from GPD truncated at 99% quantile gamma <- 0.5 sigma <- 1.5 X <- rtgpd(n=250, gamma=gamma, sigma=sigma, endpoint=qgpd(0.99, gamma=gamma, sigma=sigma)) # Truncated ML estimator trmle <- trMLE(X, plot=TRUE, ylim=c(0,2)) # Endpoint trEndpointMLE(X, gamma=trmle$gamma, tau=trmle$tau, plot=TRUE, ylim=c(0,50)) abline(h=qgpd(0.99, gamma=gamma, sigma=sigma), lty=2)
  • Maintainer: Tom Reynkens
  • License: GPL (>= 2)
  • Last published: 2024-12-02