Estimator of endpoint
Estimator of endpoint using truncated ML estimates.
trEndpointMLE(data, gamma, tau, plot = FALSE, add = FALSE, main = "Estimates of endpoint", ...)
data
: Vector of observations.gamma
: Vector of estimates for the EVI obtained from trMLE
.tau
: Vector of estimates for the obtained from trMLE
.plot
: Logical indicating if the estimates of should be plotted as a function of , default is FALSE
.add
: Logical indicating if the estimates of should be added to an existing plot, default is FALSE
.main
: Title for the plot, default is "Estimates of endpoint"
....
: Additional arguments for the plot
function, see plot
for more details.The endpoint is estimated as
with and the truncated ML estimates for and .
See Beirlant et al. (2017) for more details.
A list with following components: - k: Vector of the values of the tail parameter .
Beirlant, J., Fraga Alves, M. I. and Reynkens, T. (2017). "Fitting Tails Affected by Truncation". Electronic Journal of Statistics, 11(1), 2026--2065.
Tom Reynkens.
trMLE
, trDTMLE
, trProbMLE
, trQuantMLE
, trTestMLE
, trEndpoint
# Sample from GPD truncated at 99% quantile gamma <- 0.5 sigma <- 1.5 X <- rtgpd(n=250, gamma=gamma, sigma=sigma, endpoint=qgpd(0.99, gamma=gamma, sigma=sigma)) # Truncated ML estimator trmle <- trMLE(X, plot=TRUE, ylim=c(0,2)) # Endpoint trEndpointMLE(X, gamma=trmle$gamma, tau=trmle$tau, plot=TRUE, ylim=c(0,50)) abline(h=qgpd(0.99, gamma=gamma, sigma=sigma), lty=2)