Computes the ML estimator for the extreme value index, adapted for upper truncation, as a function of the tail parameter k (Beirlant et al., 2017). Optionally, these estimates are plotted as a function of k.
trMLE(data, start = c(1,1), eps =10^(-10), plot =TRUE, add =FALSE, main ="Estimates for EVI",...)
Arguments
data: Vector of n observations.
start: Starting values for γ and τ for the numerical optimisation.
eps: Numerical tolerance, see Details. By default it is equal to 10^(-10).
plot: Logical indicating if the estimates of γ should be plotted as a function of k, default is FALSE.
add: Logical indicating if the estimates of γ should be added to an existing plot, default is FALSE.
main: Title for the plot, default is "Estimates of the EVI".
...: Additional arguments for the plot function, see plot for more details.
Details
We compute the MLE for the γ and σ parameters of the truncated GPD. For numerical reasons, we compute the MLE for τ=γ/σ and transform this estimate to σ.
In order to meet the restrictions σ=ξ/τ>0 and 1+τEj,k>0 for j=1,…,k, we require the estimates of these quantities to be larger than the numerical tolerance value eps.
See Beirlant et al. (2017) for more details.
Returns
A list with following components: - k: Vector of the values of the tail parameter k.
gamma: Vector of the corresponding estimates for γ.
tau: Vector of the corresponding estimates for τ.
sigma: Vector of the corresponding estimates for σ.
conv: Convergence indicator of optim.
References
Beirlant, J., Fraga Alves, M. I. and Reynkens, T. (2017). "Fitting Tails Affected by Truncation". Electronic Journal of Statistics, 11(1), 2026--2065.