trMLE function

MLE estimator for upper truncated data

MLE estimator for upper truncated data

Computes the ML estimator for the extreme value index, adapted for upper truncation, as a function of the tail parameter kk (Beirlant et al., 2017). Optionally, these estimates are plotted as a function of kk.

trMLE(data, start = c(1, 1), eps = 10^(-10), plot = TRUE, add = FALSE, main = "Estimates for EVI", ...)

Arguments

  • data: Vector of nn observations.
  • start: Starting values for γ\gamma and τ\tau for the numerical optimisation.
  • eps: Numerical tolerance, see Details. By default it is equal to 10^(-10).
  • plot: Logical indicating if the estimates of γ\gamma should be plotted as a function of kk, default is FALSE.
  • add: Logical indicating if the estimates of γ\gamma should be added to an existing plot, default is FALSE.
  • main: Title for the plot, default is "Estimates of the EVI".
  • ...: Additional arguments for the plot function, see plot for more details.

Details

We compute the MLE for the γ\gamma and σ\sigma parameters of the truncated GPD. For numerical reasons, we compute the MLE for τ=γ/σ\tau=\gamma/\sigma and transform this estimate to σ\sigma.

The log-likelihood is given by

(k1)lnτ(k1)lnξ(1+1/ξ)j=2kln(1+τEj,k)(k1)ln(1(1+τE1,k)1/ξ) (k-1) \ln \tau - (k-1) \ln \xi- ( 1 + 1/\xi)\sum_{j=2}^k \ln (1+\tau E_{j,k}) -(k-1) \ln( 1- (1+ \tau E_{1,k})^{-1/\xi})

with Ej,k=Xnj+1,nXnk,nE_{j,k} = X_{n-j+1,n}-X_{n-k,n}.

In order to meet the restrictions σ=ξ/τ>0\sigma=\xi/\tau>0 and 1+τEj,k>01+\tau E_{j,k}>0 for j=1,,kj=1,\ldots,k, we require the estimates of these quantities to be larger than the numerical tolerance value eps.

See Beirlant et al. (2017) for more details.

Returns

A list with following components: - k: Vector of the values of the tail parameter kk.

  • gamma: Vector of the corresponding estimates for γ\gamma.

  • tau: Vector of the corresponding estimates for τ\tau.

  • sigma: Vector of the corresponding estimates for σ\sigma.

  • conv: Convergence indicator of optim.

References

Beirlant, J., Fraga Alves, M. I. and Reynkens, T. (2017). "Fitting Tails Affected by Truncation". Electronic Journal of Statistics, 11(1), 2026--2065.

Author(s)

Tom Reynkens.

See Also

trDTMLE, trEndpointMLE, trProbMLE, trQuantMLE, trTestMLE, trHill, GPDmle

Examples

# Sample from GPD truncated at 99% quantile gamma <- 0.5 sigma <- 1.5 X <- rtgpd(n=250, gamma=gamma, sigma=sigma, endpoint=qgpd(0.99, gamma=gamma, sigma=sigma)) # Truncated ML estimator trmle <- trMLE(X, plot=TRUE, ylim=c(0,2))
  • Maintainer: Tom Reynkens
  • License: GPL (>= 2)
  • Last published: 2024-12-02