trQuantMLE function

Estimator of large quantiles using truncated MLE

Estimator of large quantiles using truncated MLE

This function computes estimates of large quantiles Q(1p)Q(1-p) of the truncated distribution using the ML estimates adapted for upper truncation. Moreover, estimates of large quantiles QY(1p)Q_Y(1-p) of the original distribution YY, which is unobserved, are also computed.

trQuantMLE(data, gamma, tau, DT, p, Y = FALSE, plot = FALSE, add = FALSE, main = "Estimates of extreme quantile", ...)

Arguments

  • data: Vector of nn observations.
  • gamma: Vector of n1n-1 estimates for the EVI obtained from trMLE.
  • tau: Vector of n1n-1 estimates for the τ\tau obtained from trMLE.
  • DT: Vector of n1n-1 estimates for the truncation odds obtained from trDTMLE.
  • p: The exceedance probability of the quantile (we estimate Q(1p)Q(1-p) or QY(1p)Q_Y(1-p) for pp small).
  • Y: Logical indicating if quantiles from the truncated distribution (Q(1p)Q(1-p)) or from the parent distribution (QY(1p)Q_Y(1-p)) are computed. Default is TRUE.
  • plot: Logical indicating if the estimates should be plotted as a function of kk, default is FALSE.
  • add: Logical indicating if the estimates should be added to an existing plot, default is FALSE.
  • main: Title for the plot, default is "Estimates of extreme quantile".
  • ...: Additional arguments for the plot function, see plot for more details.

Details

We observe the truncated r.v. X=dYY<TX=_d Y | Y<T where TT is the truncation point and YY the untruncated r.v.

Under rough truncation, the quantiles for XX are estimated using

Q^T,k(1p)=Xnk,n+1/(τ^k)([(D^T,k+(k+1)/(n+1))/(D^T,k+p)]ξ^k1), \hat{Q}_{T,k}(1-p) = X_{n-k,n} +1/(\hat{\tau}_k)([(\hat{D}_{T,k} + (k+1)/(n+1))/(\hat{D}_{T,k}+p)]^{\hat{\xi}_k} -1),

with γ^k\hat{\gamma}_k and τ^k\hat{\tau}_k the ML estimates adapted for truncation and D^T\hat{D}_T the estimates for the truncation odds.

The quantiles for YY are estimated using

Q^Y,k(1p)=Xnk,n+1/(τ^k)([(D^T,k+(k+1)/(n+1))/(p(D^T,k+1))]ξ^k1). \hat{Q}_{Y,k}(1-p)=X_{n-k,n} +1/(\hat{\tau}_k)([(\hat{D}_{T,k} + (k+1)/(n+1))/(p(\hat{D}_{T,k}+1))]^{\hat{\xi}_k} -1).

See Beirlant et al. (2017) for more details.

Returns

A list with following components: - k: Vector of the values of the tail parameter kk.

  • Q: Vector of the corresponding quantile estimates.

  • p: The used exceedance probability.

References

Beirlant, J., Fraga Alves, M. I. and Reynkens, T. (2017). "Fitting Tails Affected by Truncation". Electronic Journal of Statistics, 11(1), 2026--2065.

Author(s)

Tom Reynkens.

See Also

trMLE, trDTMLE, trProbMLE, trEndpointMLE, trTestMLE, trQuant, Quant

Examples

# Sample from GPD truncated at 99% quantile gamma <- 0.5 sigma <- 1.5 X <- rtgpd(n=250, gamma=gamma, sigma=sigma, endpoint=qgpd(0.99, gamma=gamma, sigma=sigma)) # Truncated ML estimator trmle <- trMLE(X, plot=TRUE, ylim=c(0,2)) # Truncation odds dtmle <- trDTMLE(X, gamma=trmle$gamma, tau=trmle$tau, plot=FALSE) # Large quantile of X trQuantMLE(X, gamma=trmle$gamma, tau=trmle$tau, DT=dtmle$DT, plot=TRUE, p=0.005, ylim=c(15,30)) # Large quantile of Y trQuantMLE(X, gamma=trmle$gamma, tau=trmle$tau, DT=dtmle$DT, plot=TRUE, p=0.005, ylim=c(0,300), Y=TRUE)
  • Maintainer: Tom Reynkens
  • License: GPL (>= 2)
  • Last published: 2024-12-02