trTest function

Test for truncated Pareto-type tails

Test for truncated Pareto-type tails

Test between non-truncated Pareto-type tails (light truncation) and truncated Pareto-type tails (rough truncation).

trTest(data, alpha = 0.05, plot = TRUE, main = "Test for truncation", ...)

Arguments

  • data: Vector of nn observations.
  • alpha: The used significance level, default is 0.05.
  • plot: Logical indicating if the P-values should be plotted as a function of kk, default is FALSE.
  • main: Title for the plot, default is "Test for truncation".
  • ...: Additional arguments for the plot function, see plot for more details.

Details

We want to test H0:XH_0: X has non-truncated Pareto tails vs. H1:XH_1: X has truncated Pareto tails. Let

Ek,n(γ)=1/kj=1k(Xnk,n/Xnj+1,n)1/γ, E_{k,n}(\gamma) = 1/k \sum_{j=1}^k (X_{n-k,n}/X_{n-j+1,n})^{1/\gamma},

with Xi,nX_{i,n} the ii-th order statistic. The test statistic is then

Tk,n=12k(Ek,n(Hk,n)1/2)/(1Ek,n(Hk,n)) T_{k,n}=\sqrt{12k} (E_{k,n}(H_{k,n})-1/2) / (1-E_{k,n}(H_{k,n}))

which is asymptotically standard normally distributed. We reject H0H_0 on level α\alpha if

Tk,n<zα T_{k,n}<-z_{\alpha}

where zαz_{\alpha} is the 100(1α)%100(1-\alpha)\% quantile of a standard normal distribution. The corresponding P-value is thus given by

Φ(Tk,n) \Phi(T_{k,n})

with Φ\Phi the CDF of a standard normal distribution.

See Beirlant et al. (2016) or Section 4.2.3 of Albrecher et al. (2017) for more details.

Returns

A list with following components: - k: Vector of the values of the tail parameter kk.

  • testVal: Corresponding test values.

  • critVal: Critical value used for the test, i.e. qnorm(1-alpha/2).

  • Pval: Corresponding P-values.

  • Reject: Logical vector indicating if the null hypothesis is rejected for a certain value of k.

References

Albrecher, H., Beirlant, J. and Teugels, J. (2017). Reinsurance: Actuarial and Statistical Aspects, Wiley, Chichester.

Beirlant, J., Fraga Alves, M.I. and Gomes, M.I. (2016). "Tail fitting for Truncated and Non-truncated Pareto-type Distributions." Extremes, 19, 429--462.

Author(s)

Tom Reynkens.

See Also

trHill, trTestMLE

Examples

# Sample from truncated Pareto distribution. # truncated at 95% quantile shape <- 2 X <- rtpareto(n=1000, shape=shape, endpoint=qpareto(0.95, shape=shape)) # Test for truncation trTest(X) # Sample from truncated Pareto distribution. # truncated at 99% quantile shape <- 2 X <- rtpareto(n=1000, shape=shape, endpoint=qpareto(0.99, shape=shape)) # Test for truncation trTest(X)
  • Maintainer: Tom Reynkens
  • License: GPL (>= 2)
  • Last published: 2024-12-02