Optimizes variance
Finds the prior parameter that maximizes the marginal likelihood given the prediction.
calc.a(y, mu, sf) calc.b(y, mu, sf) calc.k(y, mu, sf)
y
: A vector of observed gene counts.mu
: A vector of predictions from expr.predict
.sf
: Vector of normalized size factors.A vector with the optimized parameter and the negative log-likelihood.
calc.a
returns a prior alpha parameter assuming constant coefficient of variation. calc.b
returns a prior beta parameter assuming constant Fano factor. calc.k
returns a prior variance parameter assuming constant variance.