ShinyItemAnalysis: Test and Item Analysis via Shiny
The ShinyItemAnalysis
package contains an interactive Shiny application for the psychometric analysis of educational tests, psychological assessments, health-related and other types of multi-item measurements, or ratings from multiple raters, which can be accessed using function startShinyItemAnalysis()
. The shiny application covers a broad range of psychometric methods and offers data examples, model equations, parameter estimates, interpretation of results, together with a selected R code, and is therefore suitable for teaching psychometric concepts with R. It also allows the users to upload and analyze their own data and to automatically generate analysis reports in PDF or HTML.
Besides, the package provides its own functions for test and item analysis within classical test theory framework (e.g., functions gDiscrim()
, ItemAnalysis()
, DistractorAnalysis()
, or DDplot()
), using various regression models (e.g., plotCumulative()
, plotAdjacent()
, plotMultinomial()
, or plotDIFLogistic()
), and under IRT framework (e.g., ggWrightMap()
, or plotDIFirt()
).
Package also contains several demonstration datasets including the HCI
dataset from the book by Martinkova and Hladka (2023), and from paper by Martinkova and Drabinova (2018). package
startShinyItemAnalysis()
DDplot()
DistractorAnalysis()
plotDistractorAnalysis()
fa_parallel()
gDiscrim()
ggWrightMap()
ICCrestricted()
ItemAnalysis()
blis()
plotAdjacent()
, plotCumulative()
, plotMultinomial()
plotDIFirt()
, plotDIFLogistic()
plot_corr()
recode_nr()
AIBS()
Anxiety()
AttitudesExpulsion()
BFI2()
CLoSEread6()
CZmatura()
CZmaturaS()
dataMedical()
dataMedicalgraded()
dataMedicalkey()
dataMedicaltest()
HCI()
HCIdata()
HCIgrads()
HCIkey()
HCIlong()
HCIprepost()
HCItest()
HCItestretest()
HeightInventory()
LearningToLearn()
MSATB()
MSclinical()
NIH()
TestAnxietyCor()
Martinkova, P., & Hladka, A. (2023). Computational Aspects of Psychometric Methods: With R. Chapman and Hall/CRC. tools:::Rd_expr_doi("10.1201/9781003054313")
Martinkova, P., & Drabinova, A. (2018). ShinyItemAnalysis for teaching psychometrics and to enforce routine analysis of educational tests. The R Journal, 10(2), 503--515, tools:::Rd_expr_doi("10.32614/RJ-2018-074")
Useful links:
Patricia Martinkova
Institute of Computer Science of the Czech Academy of Sciences
Faculty of Education, Charles University
Adela Hladka (nee Drabinova)
Institute of Computer Science of the Czech Academy of Sciences
Jan Netik
Institute of Computer Science of the Czech Academy of Sciences
Useful links