StableEstim2.3 package

Estimate the Four Parameters of Stable Laws using Different Methods

Best_t-class

Class "Best_t"

CgmmParamsEstim

Estimate parameters of stable laws using a Cgmm method

ComplexCF

Compute the characteristic function of stable laws

ComputeBest_t

Monte Carlo simulation to investigate the optimal number of points to ...

ComputeBest_tau

Run Monte Carlo simulation to investigate the optimal τ\tau

ComputeDuration

Duration

ComputeFirstRootRealeCF

First root of the empirical characteristic function

ComputeStatObjectFromFiles

Parse an output file to create a summary object (list)

ConcatFiles

Concatenates output files.

Estim_Simulation

Monte Carlo simulation

Estim-class

Class "Estim"

Estim

Estimate parameters of stable laws

expect_almost_equal

Test approximate equality

get.abMat

Default set of parameters to pass to Estim_Simulation

get.StatFcts

Default functions used to produce the statistical summary

getTime_

Read time

GMMParametersEstim

Estimate parameters of stable laws using a GMM method

IGParametersEstim

Estimate parameters of stable laws by Kogon and McCulloch methods

IntegrateRandomVectorsProduct

Integral outer product of random vectors

jacobianComplexCF

Jacobian of the characteristic function of stable laws

KoutParamsEstim

Iterative Koutrouvelis regression method

McCullochParametersEstim

Quantile-based method

MLParametersEstim

Maximum likelihood (ML) method

PrintDuration

Print duration

PrintEstimatedRemainingTime

Estimated remaining time

RegularisedSol

Regularised Inverse

sampleComplexCFMoment

Complex moment condition based on the characteristic function

sampleRealCFMoment

Real moment condition based on the characteristic function

StableEstim_reexports

Objects exported from other packages

StableEstim-package

Stable law estimation functions

StatFcts

Default functions used to produce the statistical summary

TexSummary

LaTeX summary

Estimate the four parameters of stable laws using maximum likelihood method, generalised method of moments with finite and continuum number of points, iterative Koutrouvelis regression and Kogon-McCulloch method. The asymptotic properties of the estimators (covariance matrix, confidence intervals) are also provided.

  • Maintainer: Georgi N. Boshnakov
  • License: GPL (>= 2)
  • Last published: 2024-10-24