FLIMplots function

Functions to plot FLIM results.

Functions to plot FLIM results.

plotHistAmp(multimodel, t, i=1) plotHistNormComp(multimodel, t, i=1) plotIntenImage(multimodel, t, i=1, tit=c("Intensity Image")) plotSelIntenImage(multimodel, t, i=1, tit=c("Region of Interest"), cex=1) plotTau(multimodel, t, i=1, tit=" < tau > ", plotoptions=kinopt(), lifetimes=TRUE) plotNormComp(multimodel, t, i=1)

Arguments

  • multimodel: the currModel element of the list returned by fitModel
  • t: the currTheta element of the list returned by fitModel
  • i: dataset index to make plot for
  • tit: Character vector giving the title
  • plotoptions: object of class kinopt giving the plotting options
  • cex: A numerical value giving the amount by which plotting text and symbols should be magnified relative to the default
  • lifetimes: A logical value indicating whether the averages per-pixel should be for lifetimes or their inverse, decay rates.

Returns

No return value, called for side effects

Examples

############################## ## READ IN DATA, PREPROCESS DATA ############################## ## data representing only donor tagged data("donorTagged") D1 <- preProcess(c001, sel_time=c(25,230)) D2 <- preProcess(c003, sel_time=c(25,230)) ## data representing donor-acceptor tagged data("donorAcceptorTagged") DA1 <- preProcess(cy005c, sel_time=c(25,230)) DA2 <- preProcess(cy006, sel_time=c(25,230)) ############################## ## READ IN MEASURED IRF, PREPROCESS IRF ############################## data("mea_IRF") mea_IRF <- baseIRF(mea_IRF, 100, 150)[25:230] ############################## ## SPECIFY INITIAL MODEL ############################## modelC <- initModel(mod_type = "kin", ## starting values for decays kinpar=c(1.52, 0.36), ## numerical convolution algorithm to use convalg = 2, ## measured IRF measured_irf = mea_IRF, lambdac = 650, ## shift of the irf is fixed parmu = list(0), fixed = list(parmu=1), ## one component represents a pulse-following with the IRF shape cohspec = list(type = "irf"), ## parallel kinetics seqmod=FALSE, ## decay parameters are non-negative positivepar=c("kinpar"), title="Global CFP bi-exp model with pulse-follower") ############################## ## FIT MODEL FOR DONOR ONLY DATA ############################## fitD <- fitModel(list(D1,D2), list(modelC), ## estimate the linear coeefficients per-dataset modeldiffs = list(linkclp=list(1,2)), opt=kinopt(iter=1, linrange = 10, addfilename = TRUE, output = "pdf", makeps = "globalD", notraces = TRUE, selectedtraces = seq(1, length(c001@x2), by=11), summaryplotcol = 4, summaryplotrow = 4, ylimspec = c(1, 2.5), xlab = "time (ns)", ylab = "pixel number", FLIM=TRUE)) ############################## ## FIT MODEL FOR DONOR-ACCEPTOR DATA ############################## fitDA <- fitModel(list(DA1,DA2), list(modelC), ## estimate the linear coeefficients per-dataset modeldiffs = list(linkclp=list(1,2)), opt=kinopt(iter=1, linrange = 10, addfilename = TRUE, output = "pdf", makeps = "globalDA", notraces = TRUE, selectedtraces = seq(1, length(c001@x2), by=11), summaryplotcol = 4, summaryplotrow = 4, ylimspec = c(1, 2.5), xlab = "time (ns)", ylab = "pixel number", FLIM=TRUE)) ############################## ## COMPARE THE DECAY RATES ############################## parEst(fitD) parEst(fitDA) ############################## ## ADDITIONAL FIGURES ############################## oldpar <- par(no.readonly = TRUE) par(mfrow=c(2,2), mar=c(1,3,1,12)) par(cex=1.5) plotIntenImage(fitD$currModel, fitD$currTheta, 1, tit="") par(cex=1.5) plotIntenImage(fitDA$currModel, fitD$currTheta, 1, tit="") par(cex=1.5) plotIntenImage(fitD$currModel, fitD$currTheta, 2, tit="") par(cex=1.5) plotIntenImage(fitDA$currModel, fitD$currTheta, 2, tit="") par(oldpar) ############### plo <- kinopt(ylimspec = c(.25,1.1), imagepal=grey(seq(1,0,length=100))) par(mfrow=c(2,2), mar=c(1,3,1,12)) par(cex=1.5) plotTau(fitD$currModel, fitD$currTheta, 1, tit="",plotoptions=plo, lifetimes=FALSE) par(cex=1.5) plotTau(fitDA$currModel, fitD$currTheta, 1, tit="",plotoptions=plo, lifetimes=FALSE) par(cex=1.5) plotTau(fitD$currModel, fitD$currTheta, 2, tit="",plotoptions=plo, lifetimes=FALSE) par(cex=1.5) plotTau(fitDA$currModel, fitD$currTheta, 2, tit="", plotoptions=plo, lifetimes=FALSE) par(oldpar) # end donttest ############################## ## CLEANUP GENERATED FILES ############################## # This removes the files that were generated in this example # (do not run this code if you wish to inspect the output) file_list_cleanup = c('globalDA_paramEst.txt', 'globalDA_spec_dataset_1.txt', 'globalDA_spec_dataset_2.txt', 'globalD_paramEst.txt', 'globalD_spec_dataset_1.txt', 'globalD_spec_dataset_2.txt', Sys.glob("*paramEst.txt"), Sys.glob("*.ps"), Sys.glob("Rplots*.pdf")) # Iterate over the files and delete them if they exist for (f in file_list_cleanup) { if (file.exists(f)) { unlink(f) } }

Author(s)

Katharine M. Mullen, Sergey Laptenok, Ivo H. M. van Stokkum

See Also

fitModel

  • Maintainer: Joris Snellenburg
  • License: GPL (>= 2)
  • Last published: 2022-12-12