eap-methods function

Compute expected a posteriori estimates of theta

Compute expected a posteriori estimates of theta

eap is a function for computing expected a posteriori estimates of theta. methods

eap( object, select = NULL, resp, theta_grid = seq(-4, 4, 0.1), prior = rep(1/81, 81) ) ## S4 method for signature 'item_pool' eap( object, select = NULL, resp, theta_grid = seq(-4, 4, 0.1), prior = rep(1/81, 81) ) EAP(object, select = NULL, prior, reset_prior = FALSE) ## S4 method for signature 'test' EAP(object, select = NULL, prior, reset_prior = FALSE) ## S4 method for signature 'test_cluster' EAP(object, select = NULL, prior, reset_prior = FALSE)

Arguments

  • object: an item_pool object.
  • select: (optional) if item indices are supplied, only the specified items are used.
  • resp: item response on all (or selected) items in the object argument. Can be a vector, a matrix, or a data frame. length(resp) or ncol(resp) must be equal to the number of all (or selected) items.
  • theta_grid: the theta grid to use as quadrature points. (default = seq(-4, 4, .1))
  • prior: a prior distribution, a numeric vector for a common prior or a matrix for individualized priors. (default = rep(1 / 81, 81))
  • reset_prior: used for test_cluster objects. If TRUE, reset the prior distribution for each test object.

Returns

eap returns a list containing estimated values.

  • th theta value.
  • se standard error.

Examples

eap(itempool_fatigue, resp = resp_fatigue_data[10, ]) eap(itempool_fatigue, select = 1:20, resp = resp_fatigue_data[10, 1:20])
  • Maintainer: Seung W. Choi
  • License: GPL (>= 2)
  • Last published: 2024-08-22