Optimal Test Design Approach to Fixed and Adaptive Test Construction
(Internal) Convert posterior densities into an EAP estimate
(Internal) Make decision variables for selecting an item
(Internal) Make decision variables for selecting a pool
(Internal) Check if customized first segments are available
(Internal) Check whether solution is optimal
(Internal) Sanitize item model names for C++ functions
(Internal) Select item from a shadowtest
(Internal) Validate solver for interactive use
(Internal) Clip eligibility rates into 0-1 bounds
(Internal) Combine constraints data
(Internal) Combine item pool data
(Internal) Combine two constraint matrix-data
Calculate the Fisher information using full Bayesian
Calculate alpha angles from a-parameters
(Internal) Count number of pool items that match a constraint
(Internal) Sum scores of items in a solution that match a constraint
(Internal) Count number of items in a solution that match a constraint
Calculate Adaptivity Measures
(Internal) Apply spike-reduction mechanism on exposure rates
(Internal) Aggregate item usage matrix into exposure rate table
(Internal) Append mean information to shadowtest
(Internal) Modify item information using eligibility constraints
(Internal) Augment constraint matrix-data with eligibility constraints
(Internal) Apply fading to exposure record
Check the consistency of constraints and item usage
(Internal) Modify item information using overlap constraints
(Internal) Apply shrinkage correction to theta estimate
(Internal) Thin a MCMC chain
(Internal) Assemble a shadowtest
(Internal) Determine if shadowtest assembly was feasible for exposure ...
Build constraints (shortcut to other loading functions)
Calculate the Fisher information using empirical Bayes
(C++) For multiple items, calculate Fisher information
(C++) For multiple items, calculate likelihoods
Calculate the mutual information using full Bayesian
Calculate a posterior distribution of theta
Calculate a posterior value of theta for a single item
Calculate a posterior value of theta
Calculate expected scores
Calculate Fisher information
Calculate second derivative of log-likelihood
Calculate first derivative of log-likelihood
Calculate central location (overall difficulty)
Calculate log-likelihood
Calculate item response probabilities
(Internal) Compute item information at current theta estimate
Class 'constraint': a single constraint
Class 'constraints': a set of constraints
Basic operators for constraints objects
Create a config_Shadow object
Create a config_Static object
Bayes dataset
Fatigue dataset
Reading dataset
Science dataset
(Internal) Bind matrices diagonally
Detect best solver
(Internal) Determine the current theta segment
(Internal) Perform exposure control
(Internal) Package startup functions
(Internal) Make a vector for segment-dimensioned matrix update
(C++) Calculate expected scores
Compute expected a posteriori estimates of theta
(Internal) Estimate final theta
(Internal) Estimate interim theta
(C++) Classify theta values into segments using cutpoints
(Internal) Update eligibility flags to mark administered items as elig...
(Internal) Obtain item/set level eligibility flags
(Internal) Convert prior parameters to distribution densities
(Internal) Generate item parameter samples for Bayesian purposes
(Internal) Generate random theta samples from prior distribution
(Internal) Parse Bayesian-related constants
(Internal) Parse constants for adaptive test assembly simulation
(Internal) Parse eligibility flags for a specific theta segment
(Internal) Convert item IDs to item indices for exclusion
(Internal) Precalculate item information for fixed-theta item selectio...
(Internal) Apply information penalty on items to be excluded
(Internal) Parse item/stimulus lower/upper bounds from constraints dat...
Retrieve constraints-related scores from solution
(Internal) Calculate theta segment of a given examinee
(Internal) Convert a theta distribution to segment-wise classification...
Print solution items
Retrieve constraints-related attributes from solution
(Internal) Obtain constraint matrix-data of administered items/sets
(Internal) Translate item exclusion instructions into a constraint mat...
(C++) Calculate second derivative of log-likelihood
(Internal) Increment exposure record variable: alpha
(Internal) Increment exposure record variable: n
(Internal) Increment exposure record variable: phi
(Internal) Increment exposure record variable: rho
(C++) Calculate Fisher information
(Internal) Initialize groupings record
(Internal) Initialize diagnostic exposure record
(Internal) Initialize exposure record
(Internal) Initialize segment record
(Internal) Initialize item usage matrix
Generate item parameter samples for Bayesian purposes
Basic functions for item attribute objects
(Internal) Validate item objects
Class 'item_pool_cluster': an item pool
Create an item pool cluster object
Class 'item_pool': an item pool
Basic operators for item pool objects
Load set/stimulus/passage attributes
Item classes
(C++) Calculate first derivative of log-likelihood
Convert mean and standard deviation into log-normal distribution param...
Load constraints
Load item attributes
Load item pool
Convert mean and standard deviation into logit-normal distribution par...
make constraints objects from Split() solution indices
(Internal) Collect diagnostic exposure record
(Internal) Make set-based strucutre constraints
Create a simulation data cache object
Create a test object
Create a test cluster object
(Internal) Sanitize constraints data
Compute maximum likelihood estimates of theta
Compute maximum likelihood estimates of theta using fence items
Class 'output_Shadow_all': a set of adaptive assembly solutions
Class 'output_Shadow': adaptive assembly solution for one simulee
Class 'output_Split': partitioning solution
Class 'output_Static': fixed-form assembly solution
(C++) Calculate item response probability
(Internal) Parse a constraint data into an object
(Internal) Parse prior parameters from viable sources
(Internal) Parse shadowtest refresh schedule
Extension of plot() for objects in TestDesign package
(Internal) Draw an exposure rate plot
(Internal) Plot audit trail of a single examinee
(Internal) Plot shadow chart of a single examinee
(Internal) Plot exposure rates from a simulation
(Internal) Plot test information of a single shadow test
Extension of print() for objects in TestDesign package
Calculate Relative Errors
(Internal) Return S4 object validation error messages
Calculate Root Mean Squared Error
Run Test Assembly
(Internal) Run MIP solver
Run adaptive test assembly
(Internal) Determine whether shadowtest should be refreshed
Extension of show() for objects in TestDesign package
Simulate item response data
Class 'simulation_data_cache': data cache for Shadow()
(Internal) Update groupings record for stimulus
Split an item pool into partitions
(Internal) Convert a partitioning problem solution to indices
Basic functions for stimulus attribute objects
Run fixed-form test assembly
Summary classes
Extension of summary() for objects in TestDesign package
Class 'test_cluster': data cache for simulations
Basic operators for test objects
Class 'test': data cache for simulations
Open TestDesign app
Open TestDesign app
Test solver
(C++) Calculate a theta estimate using EAP (expected a posteriori) met...
(C++) Calculate a theta estimate using EB (Empirical Bayes) method
(C++) Calculate a theta estimate using FB (Full Bayes) method
Toggle constraints
(Internal) Update diagnostic exposure record
(Internal) Update eligibility rates based on exposure rates
(Internal) Update segment record
(Internal) Update posterior densities
(Internal) Update item usage matrix
(Internal) Validate constraint (wrapper for other validators)
(Internal) Validate constraint condition expression
(Internal) Validate constraint for completeness of its required attrib...
(Internal) Validate constraint lower/upper bounds
Uses the optimal test design approach by Birnbaum (1968, ISBN:9781593119348) and van der Linden (2018) <doi:10.1201/9781315117430> to construct fixed, adaptive, and parallel tests. Supports the following mixed-integer programming (MIP) solver packages: 'Rsymphony', 'highs', 'gurobi', 'lpSolve', and 'Rglpk'. The 'gurobi' package is not available from CRAN; see <https://www.gurobi.com/downloads/>.