mle-methods function

Compute maximum likelihood estimates of theta

Compute maximum likelihood estimates of theta

mle is a function for computing maximum likelihood estimates of theta. methods

mle( object, select = NULL, resp, start_theta = NULL, max_iter = 100, crit = 0.001, truncate = FALSE, theta_range = c(-4, 4), max_change = 1, use_step_size = FALSE, step_size = 0.5, do_Fisher = TRUE ) ## S4 method for signature 'item_pool' mle( object, select = NULL, resp, start_theta = NULL, max_iter = 50, crit = 0.005, truncate = FALSE, theta_range = c(-4, 4), max_change = 1, use_step_size = FALSE, step_size = 0.5, do_Fisher = TRUE ) MLE( object, select = NULL, start_theta = NULL, max_iter = 100, crit = 0.001, theta_range = c(-4, 4), truncate = FALSE, max_change = 1, do_Fisher = TRUE ) ## S4 method for signature 'test' MLE( object, select = NULL, start_theta = NULL, max_iter = 100, crit = 0.001, theta_range = c(-4, 4), truncate = FALSE, max_change = 1, do_Fisher = TRUE ) ## S4 method for signature 'test_cluster' MLE(object, select = NULL, start_theta = NULL, max_iter = 100, crit = 0.001)

Arguments

  • object: an item_pool object.
  • select: (optional) if item indices are supplied, only the specified items are used.
  • resp: item response on all (or selected) items in the object argument. Can be a vector, a matrix, or a data frame. length(resp) or ncol(resp) must be equal to the number of all (or selected) items.
  • start_theta: (optional) initial theta values. If not supplied, EAP estimates using uniform priors are used as initial values. Uniform priors are computed using the theta_range argument below, with increments of .1.
  • max_iter: maximum number of iterations. (default = 100)
  • crit: convergence criterion to use. (default = 0.001)
  • truncate: set TRUE to impose a bound using theta_range on the estimate. (default = FALSE)
  • theta_range: a range of theta values to bound the estimate. Only effective when truncate is TRUE. (default = c(-4, 4))
  • max_change: upper bound to impose on the absolute change in theta between iterations. Absolute changes exceeding this value will be capped to max_change. (default = 1.0)
  • use_step_size: set TRUE to use step_size. (default = FALSE)
  • step_size: upper bound to impose on the absolute change in initial theta and estimated theta. Absolute changes exceeding this value will be capped to step_size. (default = 0.5)
  • do_Fisher: set TRUE to use Fisher scoring instead of Newton-Raphson method. (default = TRUE)

Returns

mle returns a list containing estimated values.

  • th theta value.
  • se standard error.
  • conv TRUE if estimation converged.
  • trunc TRUE if truncation was applied on th.

Examples

mle(itempool_fatigue, resp = resp_fatigue_data[10, ]) mle(itempool_fatigue, select = 1:20, resp = resp_fatigue_data[10, 1:20])
  • Maintainer: Seung W. Choi
  • License: GPL (>= 2)
  • Last published: 2024-08-22