VIM7.0.0 package

Visualization and Imputation of Missing Values

aggr

Aggregations for missing/imputed values

alphablend

Alphablending for colors

barMiss

Barplot with information about missing/imputed values

bgmap

Backgound map

colormapMiss

Colored map with information about missing/imputed values

colSequence

HCL and RGB color sequences

countInf

Count number of infinite or missing values

evaluation

Error performance measures

gapMiss

Missing value gap statistics

gowerD

Computes the extended Gower distance of two data sets

growdotMiss

Growing dot map with information about missing/imputed values

histMiss

Histogram with information about missing/imputed values

hotdeck

Hot-Deck Imputation

impPCA

Iterative EM PCA imputation

imputeRobust

Robust imputation

imputeRobustChain

FUNCTION_TITLE

initialise

Initialization of missing values

irmi

Iterative robust model-based imputation (IRMI)

kNN

k-Nearest Neighbour Imputation

mapMiss

Map with information about missing/imputed values

marginmatrix

Marginplot Matrix

marginplot

Scatterplot with additional information in the margins

matchImpute

Fast matching/imputation based on categorical variable

matrixplot

Matrix plot

maxCat

Aggregation function for a factor variable

medianSamp

Aggregation function for a ordinal variable

mosaicMiss

Mosaic plot with information about missing/imputed values

pairsVIM

Scatterplot Matrices

parcoordMiss

Parallel coordinate plot with information about missing/imputed values

pbox

Parallel boxplots with information about missing/imputed values

prepare

Transformation and standardization

rangerImpute

Random Forest Imputation

regressionImp

Regression Imputation

rugNA

Rug representation of missing/imputed values

sampleCat

Random aggregation function for a factor variable

scattJitt

Bivariate jitter plot

scattmatrixMiss

Scatterplot matrix with information about missing/imputed values

scattMiss

Scatterplot with information about missing/imputed values

spineMiss

Spineplot with information about missing/imputed values

tableMiss

create table with highlighted missings/imputations

VIM-package

The VIM Package: Visualization and Imputation of Missing Values

vimpute

Impute missing values with prefered Model, sequentially, with hyperpar...

xgboostImpute

Xgboost Imputation

Provides methods for imputation and visualization of missing values. It includes graphical tools to explore the amount, structure and patterns of missing and/or imputed values, supporting exploratory data analysis and helping to investigate potential missingness mechanisms (details in Alfons, Templ and Filzmoser, <doi:10.1007/s11634-011-0102-y>. The quality of imputations can be assessed visually using a wide range of univariate, bivariate and multivariate plots. The package further provides several imputation methods, including efficient implementations of k-nearest neighbour and hot-deck imputation (Kowarik and Templ 2013, <doi:10.18637/jss.v074.i07>, iterative robust model-based multiple imputation (Templ 2011, <doi:10.1016/j.csda.2011.04.012>; Templ 2023, <doi:10.3390/math11122729>), and machine learning–based approaches such as robust GAM-based multiple imputation (Templ 2024, <doi:10.1007/s11222-024-10429-1>) as well as gradient boosting (XGBoost) and transformer-based methods (Niederhametner et al., <doi:10.1177/18747655251339401>). General background and practical guidance on imputation are provided in the Springer book by Templ (2023) <doi:10.1007/978-3-031-30073-8>.