Various error measures evaluating the quality of imputations
evaluation(x, y, m, vartypes ="guess")nrmse(x, y, m)pfc(x, y, m)msecov(x, y)msecor(x, y)
Arguments
x: matrix or data frame
y: matrix or data frame of the same size as x
m: the indicator matrix for missing cells
vartypes: a vector of length ncol(x) specifying the variables types, like factor or numeric
Returns
the error measures value
Details
This function has been mainly written for procudures that evaluate imputation or replacement of rounded zeros. The ni parameter can thus, e.g. be used for expressing the number of rounded zeros.
Examples
data(iris)iris_orig <- iris_imp <- iris
iris_imp$Sepal.Length[sample(1:nrow(iris),10)]<-NAiris_imp$Sepal.Width[sample(1:nrow(iris),10)]<-NAiris_imp$Species[sample(1:nrow(iris),10)]<-NAm <- is.na(iris_imp)iris_imp <- kNN(iris_imp, imp_var =FALSE)evaluation(iris_orig, iris_imp, m = m, vartypes = c(rep("numeric",4),"factor"))msecov(iris_orig[,1:4], iris_imp[,1:4])
References
M. Templ, A. Kowarik, P. Filzmoser (2011) Iterative stepwise regression imputation using standard and robust methods. Journal of Computational Statistics and Data Analysis, Vol. 55, pp. 2793-2806.