evaluation function

Error performance measures

Error performance measures

Various error measures evaluating the quality of imputations

evaluation(x, y, m, vartypes = "guess") nrmse(x, y, m) pfc(x, y, m) msecov(x, y) msecor(x, y)

Arguments

  • x: matrix or data frame
  • y: matrix or data frame of the same size as x
  • m: the indicator matrix for missing cells
  • vartypes: a vector of length ncol(x) specifying the variables types, like factor or numeric

Returns

the error measures value

Details

This function has been mainly written for procudures that evaluate imputation or replacement of rounded zeros. The ni parameter can thus, e.g. be used for expressing the number of rounded zeros.

Examples

data(iris) iris_orig <- iris_imp <- iris iris_imp$Sepal.Length[sample(1:nrow(iris), 10)] <- NA iris_imp$Sepal.Width[sample(1:nrow(iris), 10)] <- NA iris_imp$Species[sample(1:nrow(iris), 10)] <- NA m <- is.na(iris_imp) iris_imp <- kNN(iris_imp, imp_var = FALSE) evaluation(iris_orig, iris_imp, m = m, vartypes = c(rep("numeric", 4), "factor")) msecov(iris_orig[, 1:4], iris_imp[, 1:4])

References

M. Templ, A. Kowarik, P. Filzmoser (2011) Iterative stepwise regression imputation using standard and robust methods. Journal of Computational Statistics and Data Analysis, Vol. 55, pp. 2793-2806.

Author(s)

Matthias Templ